One of the hot research topics in propagation dynamics is identifying a set of critical nodes that can influence maximization in a complex network.The importance and dispersion of critical nodes among them are both vi...One of the hot research topics in propagation dynamics is identifying a set of critical nodes that can influence maximization in a complex network.The importance and dispersion of critical nodes among them are both vital factors that can influence maximization.We therefore propose a multiple influential spreaders identification algorithm based on spectral graph theory.This algorithm first quantifies the role played by the local structure of nodes in the propagation process,then classifies the nodes based on the eigenvectors of the Laplace matrix,and finally selects a set of critical nodes by the constraint that nodes in the same class are not adjacent to each other while different classes of nodes can be adjacent to each other.Experimental results on real and synthetic networks show that our algorithm outperforms the state-of-the-art and classical algorithms in the SIR model.展开更多
An efficient method for the identification of influential spreaders that could be used to control epidemics within populations would be of considerable importance. Generally, populations are characterized by its commu...An efficient method for the identification of influential spreaders that could be used to control epidemics within populations would be of considerable importance. Generally, populations are characterized by its community structures and by the heterogeneous distributions of out-leaving links among nodes bridging over communities. A new method for community networks capable of identifying influential spreaders that accelerate the spread of disease is here proposed. In this method, influential spreaders serve as target nodes. This is based on the idea that, in k-shell decomposition method,out-leaving links and inner links are processed separately. The method was used on empirical networks constructed from online social networks, and results indicated that this method is more accurate. Its effectiveness stems from the patterns of connectivity among neighbors, and it successfully identified the important nodes. In addition, the performance of the method remained robust even when there were errors in the structure of the network.展开更多
High-power vertical-cavity surface-emitting lasers(VCSELs) are processed using a wet thermal-selective oxidation technique.The VCSEL chips are packaged by employing three different bonding methods of silver solder,I...High-power vertical-cavity surface-emitting lasers(VCSELs) are processed using a wet thermal-selective oxidation technique.The VCSEL chips are packaged by employing three different bonding methods of silver solder,In-Sn solder,and metalized diamond heat spreader.After packaging,optical output power, wavelength shift,and thermal resistance of the devices are measured and compared in an experiment.The device packaged with a metalized diamond heat spreader shows the best operation characteristics among the three methods.The 200-μm-diameter device bonded with a metalized diamond heat spreader produces a continuous wave optical output power of 0.51 W and a corresponding power density of 1.6 kW/cm^2 at room temperature.The thermal resistance is as low as 10 K/W.The accelerated aging test is also carried out at high temperature under constant current mode.The device operates for more than 1000 h at 70℃,and the total degradation is only about 10%.展开更多
基金the National Natural Science Foundation of China(Grant No.62176217)the Program from the Sichuan Provincial Science and Technology,China(Grant No.2018RZ0081)the Fundamental Research Funds of China West Normal University(Grant No.17E063)。
文摘One of the hot research topics in propagation dynamics is identifying a set of critical nodes that can influence maximization in a complex network.The importance and dispersion of critical nodes among them are both vital factors that can influence maximization.We therefore propose a multiple influential spreaders identification algorithm based on spectral graph theory.This algorithm first quantifies the role played by the local structure of nodes in the propagation process,then classifies the nodes based on the eigenvectors of the Laplace matrix,and finally selects a set of critical nodes by the constraint that nodes in the same class are not adjacent to each other while different classes of nodes can be adjacent to each other.Experimental results on real and synthetic networks show that our algorithm outperforms the state-of-the-art and classical algorithms in the SIR model.
基金Supported by Fundamental Research Funds for the Central Universities(JBK170133)Natural Science Foundation of Sichuan Province of China(17ZB0434)Ministry of Education of Humanities and Social Science Foundation of China(11XJCZH002)
文摘An efficient method for the identification of influential spreaders that could be used to control epidemics within populations would be of considerable importance. Generally, populations are characterized by its community structures and by the heterogeneous distributions of out-leaving links among nodes bridging over communities. A new method for community networks capable of identifying influential spreaders that accelerate the spread of disease is here proposed. In this method, influential spreaders serve as target nodes. This is based on the idea that, in k-shell decomposition method,out-leaving links and inner links are processed separately. The method was used on empirical networks constructed from online social networks, and results indicated that this method is more accurate. Its effectiveness stems from the patterns of connectivity among neighbors, and it successfully identified the important nodes. In addition, the performance of the method remained robust even when there were errors in the structure of the network.
基金supported by the National Natural Science Foundation of China under Grant Nos.60676025 and 60306004.
文摘High-power vertical-cavity surface-emitting lasers(VCSELs) are processed using a wet thermal-selective oxidation technique.The VCSEL chips are packaged by employing three different bonding methods of silver solder,In-Sn solder,and metalized diamond heat spreader.After packaging,optical output power, wavelength shift,and thermal resistance of the devices are measured and compared in an experiment.The device packaged with a metalized diamond heat spreader shows the best operation characteristics among the three methods.The 200-μm-diameter device bonded with a metalized diamond heat spreader produces a continuous wave optical output power of 0.51 W and a corresponding power density of 1.6 kW/cm^2 at room temperature.The thermal resistance is as low as 10 K/W.The accelerated aging test is also carried out at high temperature under constant current mode.The device operates for more than 1000 h at 70℃,and the total degradation is only about 10%.