The turbulence flow Free Surface has important applications in hydraulic spillways structure, such as the hydraulic jump, energy dissipation flow etc. This is being considered as very complicated flow, and has not yet...The turbulence flow Free Surface has important applications in hydraulic spillways structure, such as the hydraulic jump, energy dissipation flow etc. This is being considered as very complicated flow, and has not yet been solved quite well by numerical method. In this paper, a Large-scale computational software package are developed for numerical laboratory of hydraulic spillway structure. Some methods,such as turbulence model, free surface and irregular boundary treating techniques,scientific computer visualization are put forward and performed.展开更多
Hydraulic performances of skimming flow over stepped spillway was studied by means of hydraulic model experiments. The stepped spillway is a modification of the WES (Water Experiment Station) standard spillway. The ex...Hydraulic performances of skimming flow over stepped spillway was studied by means of hydraulic model experiments. The stepped spillway is a modification of the WES (Water Experiment Station) standard spillway. The experimental results indicated that the stepped spillway is more effective at dissipating energy, the dissipation ratio decreases with increasing discharge, and the free surface air entrainment on stepped spillway occurs much more upstream than on smooth spillway.展开更多
Expressions are derived for calculating hydrodynamic forces from the unit dis- charge,channel slope,and flow and velocity profiles on an overflow spillway.A sample prob- lem is included to illustrate the use of the id...Expressions are derived for calculating hydrodynamic forces from the unit dis- charge,channel slope,and flow and velocity profiles on an overflow spillway.A sample prob- lem is included to illustrate the use of the ideas presented and magnitudes of hydrodynamic forces for a 50-foot-high embankment dam.展开更多
Tarbela dam is one of the largest earth filled dam in the world used for power generation and irrigation purposes. Like all reservoirs the sediments inflow in the Tarbela reservoir has resulted in reduction in water s...Tarbela dam is one of the largest earth filled dam in the world used for power generation and irrigation purposes. Like all reservoirs the sediments inflow in the Tarbela reservoir has resulted in reduction in water storage capacity and is also causing damage to the tunnels, power generating units and ultimately to the plant equipment. This numerical study was performed to predict the flow patterns and characteristics in Tarbela dam. Tunnel 3 and 4 inlets;originally on the bed level were raised in the 3-D model and meshed. Analysis was performed using multiphase flow (water and air) for maximum inflow in the reservoir, i.e., considering summer season and discharging water through different locations, i.e., tunnels and spillways. Pressure, velocities, flow rate and free surface height results obtained were found in good agreement with the analytical and existing results where available. Results show uneven discharge through each gate due to maximum velocity near exits and overall stagnant phenomena of water within the reservoir. Maximum velocity was observed along the spillways outlet. Strong vortex motion was observed near the spillways outlet and tunnel inlets. New design of Tunnel 3 and 4 were suggested to WAPDA in order to decrease the sediment inflow and improvements in design of the spillways were suggested.展开更多
During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped...During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbu- lence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to pro- totypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels al- though little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.展开更多
The possible mitigation of floods by dams and the risk to dams from floods are key problems. The People's Republic of China is now leading world dam construction with great success and efficiency. This paper is de...The possible mitigation of floods by dams and the risk to dams from floods are key problems. The People's Republic of China is now leading world dam construction with great success and efficiency. This paper is devoted to relevant experiences from other countries, with a particular focus on lessons from accidents over the past two centuries and on new solutions. Accidents from floods are analyzed according to the dam's height, storage, dam material, and spillway data. Most of the huge accidents that have been reported occurred for embankments storing over 10 hm3. New solutions appear promising for both dam safety and flood mitigation.展开更多
Based on the momentum integral equation of boundary layer on the steep slope and the equation of water depth deduced form both the equation of continuity including the effect of the boundary layer and the energy equat...Based on the momentum integral equation of boundary layer on the steep slope and the equation of water depth deduced form both the equation of continuity including the effect of the boundary layer and the energy equation outside the boundary layer on the steep slope, and with the aid of the function of velocity profile in the boundary layer, the water depth and boundary layer were numerically computed by Runge-Kutta method. The method determine parameters in the preceding equation were also discussed in detail for the laminar and turbulent flows. The water depth boundary layer and point of inception of air entrainment calculated by above method agree well with the data obtained by prototype.展开更多
As a widely used flood energy dissipator, the stepped spillway can significantly dissipate the kinetic or hydraulic energy due to the air-entrainment in skimming flow over the steps. The free-surface aeration involves...As a widely used flood energy dissipator, the stepped spillway can significantly dissipate the kinetic or hydraulic energy due to the air-entrainment in skimming flow over the steps. The free-surface aeration involves the sharp deformation of the free surface and the complex turbulent shear flows. In this study, the volume of fluid (VOF), mixture, and Eulerian methods are utilized to simulate the air-entrainment by coupling with the Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence models. The free surface deformation, air volume fraction, pressure, and velocity are compared for the three different numerical methods. Only the Eulerian+RANS method fails to capture the free-surface aeration. The air volume fraction predicted by the VOF+LES method best matches the experimental measurement, while the mixture+LES method predicts the inception point of the air entrainment more accurately.展开更多
Over recent years, there has been a clear increase in the frequency of reported flooding events around the world. Gabion structures offer one means of flood mitigation in dam spillways. These types of structures provi...Over recent years, there has been a clear increase in the frequency of reported flooding events around the world. Gabion structures offer one means of flood mitigation in dam spillways. These types of structures provide an additional challenge to the computational modeller in that flow through the porous gabions must be simulated. We have used a computational model to investigate the flow over gabion stepped spillways. The model was first validated against published experimental results. Then, gabion stepped spillways with four different step geometries were tested under the same conditions in order to facilitate inter-comparisons and to choose the best option in terms of energy dissipation. The results show that normal gabion steps can dissipate more energy than overlap, inclined, and pooled steps. An intensive set of tests with varying slope, stone size, and porosity were undertaken. The location of the inception point and the water depth at this point obtained from this study were compared with those from existing formulae. Two new empirical equations have been derived, on the basis of a regression analysis, to provide improved results for gabion stepped spillways.展开更多
Damages as a result of cavitation are ever existing problems in high-head sp</span></span><span style="white-space:normal;"><span style="font-family:"">illways. This ar...Damages as a result of cavitation are ever existing problems in high-head sp</span></span><span style="white-space:normal;"><span style="font-family:"">illways. This article presents a brief introduction to the problems associated with high-head spillways and describes a procedure that takes into account the flow near the chute surface where the phenomenon occurs, instead of the mean flow. Application of risk analysis methodology presented can be used to estimate whether there is a possibility of cavitation or there is necessity to determine where the first aereator should be located. The advantage of the procedure herein presented takes into consideration an important new variable, such as the surface roughness. In addition, emphasis should be placed first on the need to investigate other high-head dams which climate change may have exposed them to this kind of damages. Second, there is a need to make measurement in prototype. Finally, to underscore the importance of these problems, a comment is made concerning the Oroville Dam contingency in the state of California, (United States).展开更多
Stepped cascades, chutes and spillways have been in use for more than three millennia. With the introduction of new construction materials and techniques, the staircase chute design has regained some interest within t...Stepped cascades, chutes and spillways have been in use for more than three millennia. With the introduction of new construction materials and techniques, the staircase chute design has regained some interest within the last forty years. The stepped invert increases significantly the energy dissipation occurring above the steep chute and reduces the size of the required downstream stilling structure. The application of stepped chutes further encompasses in-stream re-aeration and water treatment plant cascades, to enhance the air-water transfer of atmospheric gases and of volatile organic components. However, the engineering design of stepped spillways is not simple because of the hydrodynamic challenges, with several markedly different flow regimes, some complicated two-phase air-water fluid dynamics and massive rate of energy dissipation above the stepped chute. Simply, the technical challenges in the hydraulic design of stepped spillways are massive. This review paper examines the hydraulic characteristics of stepped chute flows and develops a reflection on nearly three decades of active hydraulic research, including recent field measurements during major flood events. The author aims to share his passion for the complicated hydraulic engineering, as well as some advice for engineering professionals and researchers.展开更多
文摘The turbulence flow Free Surface has important applications in hydraulic spillways structure, such as the hydraulic jump, energy dissipation flow etc. This is being considered as very complicated flow, and has not yet been solved quite well by numerical method. In this paper, a Large-scale computational software package are developed for numerical laboratory of hydraulic spillway structure. Some methods,such as turbulence model, free surface and irregular boundary treating techniques,scientific computer visualization are put forward and performed.
文摘Hydraulic performances of skimming flow over stepped spillway was studied by means of hydraulic model experiments. The stepped spillway is a modification of the WES (Water Experiment Station) standard spillway. The experimental results indicated that the stepped spillway is more effective at dissipating energy, the dissipation ratio decreases with increasing discharge, and the free surface air entrainment on stepped spillway occurs much more upstream than on smooth spillway.
文摘Expressions are derived for calculating hydrodynamic forces from the unit dis- charge,channel slope,and flow and velocity profiles on an overflow spillway.A sample prob- lem is included to illustrate the use of the ideas presented and magnitudes of hydrodynamic forces for a 50-foot-high embankment dam.
文摘Tarbela dam is one of the largest earth filled dam in the world used for power generation and irrigation purposes. Like all reservoirs the sediments inflow in the Tarbela reservoir has resulted in reduction in water storage capacity and is also causing damage to the tunnels, power generating units and ultimately to the plant equipment. This numerical study was performed to predict the flow patterns and characteristics in Tarbela dam. Tunnel 3 and 4 inlets;originally on the bed level were raised in the 3-D model and meshed. Analysis was performed using multiphase flow (water and air) for maximum inflow in the reservoir, i.e., considering summer season and discharging water through different locations, i.e., tunnels and spillways. Pressure, velocities, flow rate and free surface height results obtained were found in good agreement with the analytical and existing results where available. Results show uneven discharge through each gate due to maximum velocity near exits and overall stagnant phenomena of water within the reservoir. Maximum velocity was observed along the spillways outlet. Strong vortex motion was observed near the spillways outlet and tunnel inlets. New design of Tunnel 3 and 4 were suggested to WAPDA in order to decrease the sediment inflow and improvements in design of the spillways were suggested.
基金Project supported by the National Council for Science and Tech-nology of Mexico (CONACYT)
文摘During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbu- lence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to pro- totypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels al- though little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.
文摘The possible mitigation of floods by dams and the risk to dams from floods are key problems. The People's Republic of China is now leading world dam construction with great success and efficiency. This paper is devoted to relevant experiences from other countries, with a particular focus on lessons from accidents over the past two centuries and on new solutions. Accidents from floods are analyzed according to the dam's height, storage, dam material, and spillway data. Most of the huge accidents that have been reported occurred for embankments storing over 10 hm3. New solutions appear promising for both dam safety and flood mitigation.
文摘Based on the momentum integral equation of boundary layer on the steep slope and the equation of water depth deduced form both the equation of continuity including the effect of the boundary layer and the energy equation outside the boundary layer on the steep slope, and with the aid of the function of velocity profile in the boundary layer, the water depth and boundary layer were numerically computed by Runge-Kutta method. The method determine parameters in the preceding equation were also discussed in detail for the laminar and turbulent flows. The water depth boundary layer and point of inception of air entrainment calculated by above method agree well with the data obtained by prototype.
基金supported by the Guangdong Special Research Fund of Public Welfare and Capacity Building(2015A020216008)the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)
文摘As a widely used flood energy dissipator, the stepped spillway can significantly dissipate the kinetic or hydraulic energy due to the air-entrainment in skimming flow over the steps. The free-surface aeration involves the sharp deformation of the free surface and the complex turbulent shear flows. In this study, the volume of fluid (VOF), mixture, and Eulerian methods are utilized to simulate the air-entrainment by coupling with the Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence models. The free surface deformation, air volume fraction, pressure, and velocity are compared for the three different numerical methods. Only the Eulerian+RANS method fails to capture the free-surface aeration. The air volume fraction predicted by the VOF+LES method best matches the experimental measurement, while the mixture+LES method predicts the inception point of the air entrainment more accurately.
基金supported by the Higher Committee for Education Development(HCED)in Iraq
文摘Over recent years, there has been a clear increase in the frequency of reported flooding events around the world. Gabion structures offer one means of flood mitigation in dam spillways. These types of structures provide an additional challenge to the computational modeller in that flow through the porous gabions must be simulated. We have used a computational model to investigate the flow over gabion stepped spillways. The model was first validated against published experimental results. Then, gabion stepped spillways with four different step geometries were tested under the same conditions in order to facilitate inter-comparisons and to choose the best option in terms of energy dissipation. The results show that normal gabion steps can dissipate more energy than overlap, inclined, and pooled steps. An intensive set of tests with varying slope, stone size, and porosity were undertaken. The location of the inception point and the water depth at this point obtained from this study were compared with those from existing formulae. Two new empirical equations have been derived, on the basis of a regression analysis, to provide improved results for gabion stepped spillways.
文摘Damages as a result of cavitation are ever existing problems in high-head sp</span></span><span style="white-space:normal;"><span style="font-family:"">illways. This article presents a brief introduction to the problems associated with high-head spillways and describes a procedure that takes into account the flow near the chute surface where the phenomenon occurs, instead of the mean flow. Application of risk analysis methodology presented can be used to estimate whether there is a possibility of cavitation or there is necessity to determine where the first aereator should be located. The advantage of the procedure herein presented takes into consideration an important new variable, such as the surface roughness. In addition, emphasis should be placed first on the need to investigate other high-head dams which climate change may have exposed them to this kind of damages. Second, there is a need to make measurement in prototype. Finally, to underscore the importance of these problems, a comment is made concerning the Oroville Dam contingency in the state of California, (United States).
文摘Stepped cascades, chutes and spillways have been in use for more than three millennia. With the introduction of new construction materials and techniques, the staircase chute design has regained some interest within the last forty years. The stepped invert increases significantly the energy dissipation occurring above the steep chute and reduces the size of the required downstream stilling structure. The application of stepped chutes further encompasses in-stream re-aeration and water treatment plant cascades, to enhance the air-water transfer of atmospheric gases and of volatile organic components. However, the engineering design of stepped spillways is not simple because of the hydrodynamic challenges, with several markedly different flow regimes, some complicated two-phase air-water fluid dynamics and massive rate of energy dissipation above the stepped chute. Simply, the technical challenges in the hydraulic design of stepped spillways are massive. This review paper examines the hydraulic characteristics of stepped chute flows and develops a reflection on nearly three decades of active hydraulic research, including recent field measurements during major flood events. The author aims to share his passion for the complicated hydraulic engineering, as well as some advice for engineering professionals and researchers.