对于非负矩阵分解的语音增强算法在不同环境噪声的鲁棒性问题,提出一种稀疏正则非负矩阵分解(SRNMF)的语音增强算法。该算法不仅考虑到数据处理时的噪声影响,而且对系数矩阵进行了稀疏约束,使其分解出的数据具有较好的语音特征。该算法...对于非负矩阵分解的语音增强算法在不同环境噪声的鲁棒性问题,提出一种稀疏正则非负矩阵分解(SRNMF)的语音增强算法。该算法不仅考虑到数据处理时的噪声影响,而且对系数矩阵进行了稀疏约束,使其分解出的数据具有较好的语音特征。该算法首先在对语音和噪声的幅度谱先验字典矩阵学习的基础上,构建联合字典矩阵,然后更新带噪语音幅度谱在联合字典矩阵下的系数矩阵,最后重构原始纯净语音,实现语音增强。实验结果表明,在非平稳噪声和低信噪比(小于0 d B)条件下,该算法较好地削弱了噪声的变化对算法性能的影响,不仅有较高的信源失真率(SDR),提高了1~1.5个数量级,而且运算速度也有一定程度的提高,使得基于非负矩阵分解的语音增强算法更实用。展开更多
Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the ge...Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the gem eralization problem of AAM, we first reformulate the original AAM as sparsity-regularized AAM, which can achieve more compact/better shape and appearance priors by selecting nearest neighbors as the bases of the shape and appearance model. To speed up the fitting procedure, the sparsity in sparsity?regularized AAM is approximated by using the locality (i.e., AT-nearest neighbor), and thus inducing the locality-constrained active appearance model (LC-AAM). The LC-AAM solves a constrained AAM-like fitting problem with the K-nearest neighbors as the bases of shape and appearance model. To alleviate the adverse influence of inaccurate AT-nearest neighbor results, the locality constraint is further embedded in the discriminative fitting method denoted as LC-DFM, which can find better K-nearest neighbor results by employing shape-indexed feature, and can also tolerate some inaccurate neighbors benefited from the regression model rather than the generative model in AAM. Extensive experiments on several datasets demonstrate that our methods outperform the state-of-the-arts in both detection accuracy and generalization ability.展开更多
Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which...Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which can be obtained much easier, a novel semi-supervised classification method named Elastic Sparsity Regularized Support Vector Machine (ESRSVM) is proposed for radio transmitter classification. ESRSVM first constructs an elastic-net graph over data samples to capture the robust and natural discriminating information and then incorporate the information into the manifold learning framework by an elastic sparsity regularization term. Experimental results on 10 GMSK modulated Automatic Identification System radios and 15 FM walkie-talkie radios show that ESRSVM achieves obviously better performance than KNN and SVM, which use only labeled samples for classification, and also outperforms semi-supervised classifier LapSVM based on manifold regularization.展开更多
文摘对于非负矩阵分解的语音增强算法在不同环境噪声的鲁棒性问题,提出一种稀疏正则非负矩阵分解(SRNMF)的语音增强算法。该算法不仅考虑到数据处理时的噪声影响,而且对系数矩阵进行了稀疏约束,使其分解出的数据具有较好的语音特征。该算法首先在对语音和噪声的幅度谱先验字典矩阵学习的基础上,构建联合字典矩阵,然后更新带噪语音幅度谱在联合字典矩阵下的系数矩阵,最后重构原始纯净语音,实现语音增强。实验结果表明,在非平稳噪声和低信噪比(小于0 d B)条件下,该算法较好地削弱了噪声的变化对算法性能的影响,不仅有较高的信源失真率(SDR),提高了1~1.5个数量级,而且运算速度也有一定程度的提高,使得基于非负矩阵分解的语音增强算法更实用。
基金the National Natural Science Foundation of China (Grant Nos. 61650202, 61402443, 61672496)the Strategic Priority Research Program of the CAS (XDB02070004).
文摘Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the gem eralization problem of AAM, we first reformulate the original AAM as sparsity-regularized AAM, which can achieve more compact/better shape and appearance priors by selecting nearest neighbors as the bases of the shape and appearance model. To speed up the fitting procedure, the sparsity in sparsity?regularized AAM is approximated by using the locality (i.e., AT-nearest neighbor), and thus inducing the locality-constrained active appearance model (LC-AAM). The LC-AAM solves a constrained AAM-like fitting problem with the K-nearest neighbors as the bases of shape and appearance model. To alleviate the adverse influence of inaccurate AT-nearest neighbor results, the locality constraint is further embedded in the discriminative fitting method denoted as LC-DFM, which can find better K-nearest neighbor results by employing shape-indexed feature, and can also tolerate some inaccurate neighbors benefited from the regression model rather than the generative model in AAM. Extensive experiments on several datasets demonstrate that our methods outperform the state-of-the-arts in both detection accuracy and generalization ability.
基金Supported by the Hi-Tech Research and Development Program of China (No. 2009AAJ130)
文摘Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which can be obtained much easier, a novel semi-supervised classification method named Elastic Sparsity Regularized Support Vector Machine (ESRSVM) is proposed for radio transmitter classification. ESRSVM first constructs an elastic-net graph over data samples to capture the robust and natural discriminating information and then incorporate the information into the manifold learning framework by an elastic sparsity regularization term. Experimental results on 10 GMSK modulated Automatic Identification System radios and 15 FM walkie-talkie radios show that ESRSVM achieves obviously better performance than KNN and SVM, which use only labeled samples for classification, and also outperforms semi-supervised classifier LapSVM based on manifold regularization.