针对多无人机博弈对抗过程中无人机数量动态衰减问题和传统深度强化学习算法中的稀疏奖励问题及无效经验抽取频率过高问题,本文以攻防能力及通信范围受限条件下的多无人机博弈对抗任务为研究背景,构建了红、蓝两方无人机群的博弈对抗模...针对多无人机博弈对抗过程中无人机数量动态衰减问题和传统深度强化学习算法中的稀疏奖励问题及无效经验抽取频率过高问题,本文以攻防能力及通信范围受限条件下的多无人机博弈对抗任务为研究背景,构建了红、蓝两方无人机群的博弈对抗模型,在多智能体深度确定性策略梯度(multi-agent deep deterministic policy gradient,MADDPG)算法的Actor-Critic框架下,根据博弈环境的特点对原始的MADDPG算法进行改进。为了进一步提升算法对有效经验的探索和利用,本文构建了规则耦合模块以在无人机的决策过程中对Actor网络进行辅助。仿真实验表明,本文设计的算法在收敛速度、学习效率和稳定性方面都取了一定的提升,异构子网络的引入使算法更适用于无人机数量动态衰减的博弈场景;奖励势函数和重要性权重耦合的优先经验回放方法提升了经验差异的细化程度及优势经验利用率;规则耦合模块的引入实现了无人机决策网络对先验知识的有效利用。展开更多
在深度强化学习方法中,针对内在好奇心模块(intrinsic curiosity model,ICM)指导智能体在稀疏奖励环境中获得未知策略学习的机会,但好奇心奖励是一个状态差异值,会使智能体过度关注于对新状态的探索,进而出现盲目探索的问题,提出了一种...在深度强化学习方法中,针对内在好奇心模块(intrinsic curiosity model,ICM)指导智能体在稀疏奖励环境中获得未知策略学习的机会,但好奇心奖励是一个状态差异值,会使智能体过度关注于对新状态的探索,进而出现盲目探索的问题,提出了一种基于知识蒸馏的内在好奇心改进算法(intrinsic curiosity model algorithm based on knowledge distillation,KD-ICM)。首先,该算法引入知识蒸馏的方法,使智能体在较短的时间内获得更丰富的环境信息和策略知识,加速学习过程;其次,通过预训练教师神经网络模型去引导前向网络,得到更高精度和性能的前向网络模型,减少智能体的盲目探索。在Unity仿真平台上设计了两个不同的仿真实验进行对比,实验表明,在复杂仿真任务环境中,KD-ICM算法的平均奖励比ICM提升了136%,最优动作概率比ICM提升了13.47%,提升智能体探索性能的同时能提高探索的质量,验证了算法的可行性。展开更多
针对航天器与非合作目标追逃博弈的生存型微分对策拦截问题,基于强化学习研究了追逃博弈策略,提出了自适应增强随机搜索(adaptive-augmented random search,A-ARS)算法。针对序贯决策的稀疏奖励难题,设计了基于策略参数空间扰动的探索方...针对航天器与非合作目标追逃博弈的生存型微分对策拦截问题,基于强化学习研究了追逃博弈策略,提出了自适应增强随机搜索(adaptive-augmented random search,A-ARS)算法。针对序贯决策的稀疏奖励难题,设计了基于策略参数空间扰动的探索方法,加快策略收敛速度;针对可能过早陷入局部最优问题设计了新颖度函数并引导策略更新,可提升数据利用效率;通过数值仿真验证并与增强随机搜索(augmented random search,ARS)、近端策略优化算法(proximal policy optimization,PPO)以及深度确定性策略梯度下降算法(deep deterministic policy gradient,DDPG)进行对比,验证了此方法的有效性和先进性。展开更多
文摘针对多无人机博弈对抗过程中无人机数量动态衰减问题和传统深度强化学习算法中的稀疏奖励问题及无效经验抽取频率过高问题,本文以攻防能力及通信范围受限条件下的多无人机博弈对抗任务为研究背景,构建了红、蓝两方无人机群的博弈对抗模型,在多智能体深度确定性策略梯度(multi-agent deep deterministic policy gradient,MADDPG)算法的Actor-Critic框架下,根据博弈环境的特点对原始的MADDPG算法进行改进。为了进一步提升算法对有效经验的探索和利用,本文构建了规则耦合模块以在无人机的决策过程中对Actor网络进行辅助。仿真实验表明,本文设计的算法在收敛速度、学习效率和稳定性方面都取了一定的提升,异构子网络的引入使算法更适用于无人机数量动态衰减的博弈场景;奖励势函数和重要性权重耦合的优先经验回放方法提升了经验差异的细化程度及优势经验利用率;规则耦合模块的引入实现了无人机决策网络对先验知识的有效利用。
文摘在深度强化学习方法中,针对内在好奇心模块(intrinsic curiosity model,ICM)指导智能体在稀疏奖励环境中获得未知策略学习的机会,但好奇心奖励是一个状态差异值,会使智能体过度关注于对新状态的探索,进而出现盲目探索的问题,提出了一种基于知识蒸馏的内在好奇心改进算法(intrinsic curiosity model algorithm based on knowledge distillation,KD-ICM)。首先,该算法引入知识蒸馏的方法,使智能体在较短的时间内获得更丰富的环境信息和策略知识,加速学习过程;其次,通过预训练教师神经网络模型去引导前向网络,得到更高精度和性能的前向网络模型,减少智能体的盲目探索。在Unity仿真平台上设计了两个不同的仿真实验进行对比,实验表明,在复杂仿真任务环境中,KD-ICM算法的平均奖励比ICM提升了136%,最优动作概率比ICM提升了13.47%,提升智能体探索性能的同时能提高探索的质量,验证了算法的可行性。
文摘针对航天器与非合作目标追逃博弈的生存型微分对策拦截问题,基于强化学习研究了追逃博弈策略,提出了自适应增强随机搜索(adaptive-augmented random search,A-ARS)算法。针对序贯决策的稀疏奖励难题,设计了基于策略参数空间扰动的探索方法,加快策略收敛速度;针对可能过早陷入局部最优问题设计了新颖度函数并引导策略更新,可提升数据利用效率;通过数值仿真验证并与增强随机搜索(augmented random search,ARS)、近端策略优化算法(proximal policy optimization,PPO)以及深度确定性策略梯度下降算法(deep deterministic policy gradient,DDPG)进行对比,验证了此方法的有效性和先进性。