期刊文献+

稀疏奖励下基于强化学习的异构多智能体对抗 被引量:2

Heterogeneous multi-agent confrontation based on reinforcement learning under the sparse reward
下载PDF
导出
摘要 文中在多智能体对抗问题研究过程中,采用强化学习为研究方法,以完全中心化训练架构为基础,选用基于策略的强化学习算法,针对领域研究中广泛存在的稀疏奖励问题,采用基于任务局部的奖励工程设定方法,以人为经验知识为导引,加速训练过程,提升训练结果。最后以对抗问题中典型的攻防对抗为场景进行了仿真实验,验证了方法的有效性。 In the research of multi-agent confrontation,reinforcement learning is used as the research method.Based on a completely centralized training framework,the policy-based reinforcement learning algorithm is selected.Regarding the problem that sparse reward is widely existed in the field research,a part-task-based reward project setting method is adopted to accelerate the training process and improve the training results with the guidance of human experience knowledge.Finally,a simulation experiment of attack-defense confrontation which is representitve in the field is carried out to verify the effectiveness of the method.
作者 王瑞星 董诗音 江飞龙 黄胜全 WANG Rui-xing;DONG Shi-yin;JIANG Fei-long;HUANG Sheng-quan(Deep Space Exploration Research Center,Harbin Institute of Technology,Harbin 150001,China;Shanghai Electro-Mechanical Engineering Institute,Shanghai 201109,China)
出处 《信息技术》 2021年第5期12-20,共9页 Information Technology
基金 中央军委装备发展部装备预研基金(JZX7Y20-190243001201)。
关键词 多智能体博弈 强化学习 稀疏奖励 基于任务局部的奖励工程设定 multi-agent games reinforcement learning sparse reward part-task-based reward project
  • 相关文献

参考文献7

二级参考文献38

共引文献267

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部