The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(...The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(3)-Mg O slag was studied using the method of slag/steel reaction.The experimental results showed that as the initial content of Al increased from 0.035 wt%to 2 wt%,Al gradually replaced Mn to react with Si O_(2)in slag to avoid the loss of Mn due to the reaction;this process caused both Al_(2)O_(3)in slag and Si in steel to increase while Si O_(2)and Mn O in slag to reduce.In addition,the type of inclusions also evolved as the initial Al content increased.The evolution route of inclusions was Mn O→Mn O-Al_(2)O_(3)-Mg O→Mg O→Mn O-Ca O-Al_(2)O_(3)-Mg O and Mn O-Ca O-Mg O.The shape of inclusions evolved from spherical to irregular,became faceted,and finally transformed to spherical.The average size of inclusions presented a trend that was increasing first and then decreasing.The transformation mechanism of inclusions was explored.As the initial content of Al increased,Mg and Ca were reduced from top slag into molten steel in sequence,which consequently caused the transformation of inclusions.展开更多
A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory....A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory.In the developed model,the Fe-Cr-Mn-Si-Al-S-O-melts reaction system and CaO-MgO-CaF_(2)-FeO-MnO-Al_(2)O_(3)-SiO_(2)-Cr2O_(3)slags were considered.The oxygen contents calculated by the model are in good agreement with experimental results and reference data.The equilibrium oxygen contents in 304 stainless steel mainly decrease with increasing binary basicity(w(CaO)/w(SiO_(2)),where w(i)is the mass percentage of component i)and decreasing temperature.Controlling binary basicity at 2.0 while maintaining temperatures lower than 1823 K will keep the oxygen contents in the 304 stainless steel lower than 15×10^(-6).The equilibrium oxygen contents may also be decreased with increasing content of MgO in slags,which is more significant at lower binary basicity.Besides,a small amount of FeO,MnO,and Al_(2)O_(3)(about 0-2.5 wt.%)in slags has little effect on equilibrium oxygen contents.Furthermore,it is found that the[C]-[O]reaction may occur during refining process but will not significantly affect the equilibrium oxygen contents.展开更多
Based on a thermodynamic study of 5 wt.%Si high-silicon austenitic stainless steel(SS-5Si)smelting using CaF_(2)-CaO-Al_(2)0_(3)-Mg-Si0_(2) slag to obtain a low oxygen content of less than 10×10^(-4) wt.%,a kinet...Based on a thermodynamic study of 5 wt.%Si high-silicon austenitic stainless steel(SS-5Si)smelting using CaF_(2)-CaO-Al_(2)0_(3)-Mg-Si0_(2) slag to obtain a low oxygen content of less than 10×10^(-4) wt.%,a kinetic mass transfer model for deep deoxidation was established through laboratory studies,and the effects of slag components and temperature on deoxidation during the slag-steel reaction process of sS-5Si were systematically studied.The experimental data verified the accuracy of the model predictions.The results showed that the final oxygen content in the steel at 1873 K was mainly controlled by the oxygen content derived from the activity of SiO_(2) regulated by the[Si]-[O]equilibrium reaction in the slag system;in particular,when the slag basicity R(R=w(CaO)/w(SiO2),where w(CaO)and w(SiO_(2))are the contents of CaO and SiO_(2) in the slag,respectively)is 3,the Al2O3 content in the slag needs to be less than 2.7%.The mass transfer rate equation for the kinetics of the deoxidation reaction revealed that the mass transfer of oxygen in the liquid metal is the rate-controlling step under different slag conditions at 1873 K,and the oxygen transfer coefficient ko.m increases with increasing the slag basicity from 4.0×10^(-6)m s^(-1)(R=1)to 4.3×10^(-5) m s^(-1)(R=3).ko.m values at R=2 and R=3 are almost the same,indicating that high slag basicity has little effect.The integral of the mass transfer rate equation for the deoxidation reaction of SS-5Si under different slag conditions is obtained.The total oxygen content of the molten steel decreases with increasing basicity from an initial content of 22×10^(-4) to 3.2×10^(-4) wt.%(R=3),consistent with the change in ko.m with slag basicity.At R=2,the slag-steel reaction takes 15 min to reach equilibrium(w[O]=5.5×10^(-4) wt.%),whereas at R=3,the slag-steel reaction takes 30 min to reach equilibrium(w[0]=3.2×10^(-4) wt.%).Considering the depth of deoxidation and reaction time of SS-5Si smelting,it is recommended the slag basicity be controlled at approximately 2.展开更多
Laboratory-scale experiments were performed to investigate the deoxidation of H13 tool steel with CaF_(2)-MgO-Al_(2)O_(3)-CaO-SiO_(2) slags at 1873 K.The calculation of thermodynamics and kinetics was also verified th...Laboratory-scale experiments were performed to investigate the deoxidation of H13 tool steel with CaF_(2)-MgO-Al_(2)O_(3)-CaO-SiO_(2) slags at 1873 K.The calculation of thermodynamics and kinetics was also verified through the experimental results.The results show that[Si]-[O]reaction is the control reaction,and with the increase of basicity of slag,the limitation of deoxidation was decreased.The limitation of deoxidation is the lowest for the slag with basicity of 2.0.Under the conditions of the basicity of 2.0 and the content of CaF_(2) more than 50%,the limitation of deoxidation is less than 10×10^(−6),and it does not depend on the contents of Al_(2)O_(3) and CaF_(2) in slags.The mass transport of oxygen in the metal phase is the rate-controlling step,and the slag composition has no effect on the equilibrium time of deoxidation.Based on this finding,the optimized slag composition is designed and it contains the following components:51.5%CaF_(2),20.3%MgO,16.2%Al_(2)O_(3),8.2%CaO and 3.8%SiO_(2).In the case of the optimized deoxidizing slag,the total oxygen content in H13 steel can be reduced from 25×10^(−6) to 6×10^(−6).展开更多
The thermodynamic equilibrium of deoxidation reactions between molten slag and steel was calculated using a slag-steel coupling thermodynamic model and the mass conservation model based on the ion-molecular coexistenc...The thermodynamic equilibrium of deoxidation reactions between molten slag and steel was calculated using a slag-steel coupling thermodynamic model and the mass conservation model based on the ion-molecular coexistence theory.The study focused on the effects of slag composition and deoxidizer type on the oxygen content of low alloy steel during the electroslag remelting(ESR)process.The measured and predicted values of the oxygen content in remelted ingots,and the contents of FeO and MnO in slags were compared and analyzed.Results show that the measured content of total oxygen has a certain correlation with the trend of dissolved oxygen predicted by the model when using Ca-Si alloys as deoxidizer,but it is not correlated with the trend of dissolved oxygen predicted by the model when using Al as deoxidizer.The deoxidation mechanisms of Ca-Si and Al are different.Ca-Si alloy directly reacts with FeO and MnO in slag to reduce the oxygen potential of slag,hence it can inhibit the transfer of oxygen from the slag to molten steel.While,when Al deoxidizer is used,the oxygen content in steel is mainly reduced through floating up the alumina inclusions.Compared to Al,utilizing Ca-Si alloy as a deoxidizer is more effective in reducing the oxygen content and the amount of inclusions in ESR ingot.展开更多
基金financially supported by the Ministry of Industry and Information Technology of China(No.TC180A6MR)China Scholarship Council and the National Natural Science Foundation of China(No.51404020)。
文摘The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(3)-Mg O slag was studied using the method of slag/steel reaction.The experimental results showed that as the initial content of Al increased from 0.035 wt%to 2 wt%,Al gradually replaced Mn to react with Si O_(2)in slag to avoid the loss of Mn due to the reaction;this process caused both Al_(2)O_(3)in slag and Si in steel to increase while Si O_(2)and Mn O in slag to reduce.In addition,the type of inclusions also evolved as the initial Al content increased.The evolution route of inclusions was Mn O→Mn O-Al_(2)O_(3)-Mg O→Mg O→Mn O-Ca O-Al_(2)O_(3)-Mg O and Mn O-Ca O-Mg O.The shape of inclusions evolved from spherical to irregular,became faceted,and finally transformed to spherical.The average size of inclusions presented a trend that was increasing first and then decreasing.The transformation mechanism of inclusions was explored.As the initial content of Al increased,Mg and Ca were reduced from top slag into molten steel in sequence,which consequently caused the transformation of inclusions.
基金This work was financially supported by Key R&D Plan of Shandong Province in 2021(Grant No.2021CXGC010209).
文摘A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory.In the developed model,the Fe-Cr-Mn-Si-Al-S-O-melts reaction system and CaO-MgO-CaF_(2)-FeO-MnO-Al_(2)O_(3)-SiO_(2)-Cr2O_(3)slags were considered.The oxygen contents calculated by the model are in good agreement with experimental results and reference data.The equilibrium oxygen contents in 304 stainless steel mainly decrease with increasing binary basicity(w(CaO)/w(SiO_(2)),where w(i)is the mass percentage of component i)and decreasing temperature.Controlling binary basicity at 2.0 while maintaining temperatures lower than 1823 K will keep the oxygen contents in the 304 stainless steel lower than 15×10^(-6).The equilibrium oxygen contents may also be decreased with increasing content of MgO in slags,which is more significant at lower binary basicity.Besides,a small amount of FeO,MnO,and Al_(2)O_(3)(about 0-2.5 wt.%)in slags has little effect on equilibrium oxygen contents.Furthermore,it is found that the[C]-[O]reaction may occur during refining process but will not significantly affect the equilibrium oxygen contents.
文摘Based on a thermodynamic study of 5 wt.%Si high-silicon austenitic stainless steel(SS-5Si)smelting using CaF_(2)-CaO-Al_(2)0_(3)-Mg-Si0_(2) slag to obtain a low oxygen content of less than 10×10^(-4) wt.%,a kinetic mass transfer model for deep deoxidation was established through laboratory studies,and the effects of slag components and temperature on deoxidation during the slag-steel reaction process of sS-5Si were systematically studied.The experimental data verified the accuracy of the model predictions.The results showed that the final oxygen content in the steel at 1873 K was mainly controlled by the oxygen content derived from the activity of SiO_(2) regulated by the[Si]-[O]equilibrium reaction in the slag system;in particular,when the slag basicity R(R=w(CaO)/w(SiO2),where w(CaO)and w(SiO_(2))are the contents of CaO and SiO_(2) in the slag,respectively)is 3,the Al2O3 content in the slag needs to be less than 2.7%.The mass transfer rate equation for the kinetics of the deoxidation reaction revealed that the mass transfer of oxygen in the liquid metal is the rate-controlling step under different slag conditions at 1873 K,and the oxygen transfer coefficient ko.m increases with increasing the slag basicity from 4.0×10^(-6)m s^(-1)(R=1)to 4.3×10^(-5) m s^(-1)(R=3).ko.m values at R=2 and R=3 are almost the same,indicating that high slag basicity has little effect.The integral of the mass transfer rate equation for the deoxidation reaction of SS-5Si under different slag conditions is obtained.The total oxygen content of the molten steel decreases with increasing basicity from an initial content of 22×10^(-4) to 3.2×10^(-4) wt.%(R=3),consistent with the change in ko.m with slag basicity.At R=2,the slag-steel reaction takes 15 min to reach equilibrium(w[O]=5.5×10^(-4) wt.%),whereas at R=3,the slag-steel reaction takes 30 min to reach equilibrium(w[0]=3.2×10^(-4) wt.%).Considering the depth of deoxidation and reaction time of SS-5Si smelting,it is recommended the slag basicity be controlled at approximately 2.
基金Project(18SYXHZ0069)supported by the Science and Technology Program of Sichuan Province,ChinaProjects(51974139,51664021)supported by the National Natural Science Foundation of China。
文摘Laboratory-scale experiments were performed to investigate the deoxidation of H13 tool steel with CaF_(2)-MgO-Al_(2)O_(3)-CaO-SiO_(2) slags at 1873 K.The calculation of thermodynamics and kinetics was also verified through the experimental results.The results show that[Si]-[O]reaction is the control reaction,and with the increase of basicity of slag,the limitation of deoxidation was decreased.The limitation of deoxidation is the lowest for the slag with basicity of 2.0.Under the conditions of the basicity of 2.0 and the content of CaF_(2) more than 50%,the limitation of deoxidation is less than 10×10^(−6),and it does not depend on the contents of Al_(2)O_(3) and CaF_(2) in slags.The mass transport of oxygen in the metal phase is the rate-controlling step,and the slag composition has no effect on the equilibrium time of deoxidation.Based on this finding,the optimized slag composition is designed and it contains the following components:51.5%CaF_(2),20.3%MgO,16.2%Al_(2)O_(3),8.2%CaO and 3.8%SiO_(2).In the case of the optimized deoxidizing slag,the total oxygen content in H13 steel can be reduced from 25×10^(−6) to 6×10^(−6).
文摘The thermodynamic equilibrium of deoxidation reactions between molten slag and steel was calculated using a slag-steel coupling thermodynamic model and the mass conservation model based on the ion-molecular coexistence theory.The study focused on the effects of slag composition and deoxidizer type on the oxygen content of low alloy steel during the electroslag remelting(ESR)process.The measured and predicted values of the oxygen content in remelted ingots,and the contents of FeO and MnO in slags were compared and analyzed.Results show that the measured content of total oxygen has a certain correlation with the trend of dissolved oxygen predicted by the model when using Ca-Si alloys as deoxidizer,but it is not correlated with the trend of dissolved oxygen predicted by the model when using Al as deoxidizer.The deoxidation mechanisms of Ca-Si and Al are different.Ca-Si alloy directly reacts with FeO and MnO in slag to reduce the oxygen potential of slag,hence it can inhibit the transfer of oxygen from the slag to molten steel.While,when Al deoxidizer is used,the oxygen content in steel is mainly reduced through floating up the alumina inclusions.Compared to Al,utilizing Ca-Si alloy as a deoxidizer is more effective in reducing the oxygen content and the amount of inclusions in ESR ingot.