针对全盲信道辨识算法无法辨识含公零点信道且对信道阶数误差敏感的问题,本文基于信道的CR相关性提出一种简单有效的半盲信道辨识算法。算法通过输出数据构造相关矩阵W,根据相关矩阵W与信道向量的正交性构造约束方程,并利用少量已知符...针对全盲信道辨识算法无法辨识含公零点信道且对信道阶数误差敏感的问题,本文基于信道的CR相关性提出一种简单有效的半盲信道辨识算法。算法通过输出数据构造相关矩阵W,根据相关矩阵W与信道向量的正交性构造约束方程,并利用少量已知符号和改进的最小二乘(Modified least square,MLS)准则建立额外的约束,通过最小二乘法求得信道响应的闭式解。该算法有效地克服了全盲信道辨识算法的诸多局限性,避免了传统半盲方法面临的最优加权选择问题,算法复杂度较低且性能稳定,对信道噪声及信道阶数具有较强的鲁棒性。仿真实验验证了所提算法的有效性与优越性。展开更多
A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of singleinput multiple-output (SIMO) systems. The joint ML optimisation over channel and data is decompo...A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of singleinput multiple-output (SIMO) systems. The joint ML optimisation over channel and data is decomposed into an iterative optimisation loop. An efficient global optimisation algorithm called the repeated weighted boosting search is employed at the upper level to optimally identify the unknown SIMO channel model, and the Viterbi algorithm is used at the lower level to produce the maximum likelihood sequence estimation of the unknown data sequence. A simulation example is used to demonstrate the effectiveness of this joint ML optimisation scheme for blind adaptive SIMO systems.展开更多
文摘针对全盲信道辨识算法无法辨识含公零点信道且对信道阶数误差敏感的问题,本文基于信道的CR相关性提出一种简单有效的半盲信道辨识算法。算法通过输出数据构造相关矩阵W,根据相关矩阵W与信道向量的正交性构造约束方程,并利用少量已知符号和改进的最小二乘(Modified least square,MLS)准则建立额外的约束,通过最小二乘法求得信道响应的闭式解。该算法有效地克服了全盲信道辨识算法的诸多局限性,避免了传统半盲方法面临的最优加权选择问题,算法复杂度较低且性能稳定,对信道噪声及信道阶数具有较强的鲁棒性。仿真实验验证了所提算法的有效性与优越性。
文摘A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of singleinput multiple-output (SIMO) systems. The joint ML optimisation over channel and data is decomposed into an iterative optimisation loop. An efficient global optimisation algorithm called the repeated weighted boosting search is employed at the upper level to optimally identify the unknown SIMO channel model, and the Viterbi algorithm is used at the lower level to produce the maximum likelihood sequence estimation of the unknown data sequence. A simulation example is used to demonstrate the effectiveness of this joint ML optimisation scheme for blind adaptive SIMO systems.