Heavy ion-induced single event upsets(SEUs)of static random access memory(SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4...Heavy ion-induced single event upsets(SEUs)of static random access memory(SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4 simulation toolkit. The SEU cross sections and multiple cell upset(MCU) susceptibility of 3D SRAM are explored using different types and energies of heavy ions.In the simulations, the sensitivities of different dies of 3D SRAM show noticeable discrepancies for low linear energy transfers(LETs). The average percentage of MCUs of 3D SRAM increases from 17.2 to 32.95%, followed by the energy of ^(209)Bi decreasing from 71.77 to 38.28 MeV/u. For a specific LET, the percentage of MCUs presents a notable difference between the face-to-face and back-toface structures. In the back-to-face structure, the percentage of MCUs increases with a deeper die, compared with the face-to-face structure. The simulation method and process are verified by comparing the SEU cross sections of planar SRAM with experimental data. The upset cross sections of the planar process and 3D integrated SRAM are analyzed. The results demonstrate that the 3D SRAM sensitivity is not greater than that of the planar SRAM. The 3D process technology has the potential to be applied to the aerospace and military fields.展开更多
This paper reviews the status of research in modeling and simulation of single-event effects(SEE) in digital devices and integrated circuits. After introducing a brief historical overview of SEE simulation, differen...This paper reviews the status of research in modeling and simulation of single-event effects(SEE) in digital devices and integrated circuits. After introducing a brief historical overview of SEE simulation, different level simulation approaches of SEE are detailed, including material-level physical simulation where two primary methods by which ionizing radiation releases charge in a semiconductor device(direct ionization and indirect ionization) are introduced, device-level simulation where the main emerging physical phenomena affecting nanometer devices(bipolar transistor effect, charge sharing effect) and the methods envisaged for taking them into account are focused on, and circuit-level simulation where the methods for predicting single-event response about the production and propagation of single-event transients(SETs) in sequential and combinatorial logic are detailed, as well as the soft error rate trends with scaling are particularly addressed.展开更多
胚胎电子细胞的基因循环存储模块在辐射空间容易受到单粒子翻转(SEU)影响,由于缺乏有效的自检手段,严重制约了胚胎电子阵列在深空等辐射环境中的应用。本文设计了一种新型的具有SEU自修复能力的触发器单元,并结合汉明纠错码,设计了一种...胚胎电子细胞的基因循环存储模块在辐射空间容易受到单粒子翻转(SEU)影响,由于缺乏有效的自检手段,严重制约了胚胎电子阵列在深空等辐射环境中的应用。本文设计了一种新型的具有SEU自修复能力的触发器单元,并结合汉明纠错码,设计了一种新型的具有SEU自检和自修复能力的基因循环存储模块,可以在维持胚胎电子细胞阵列正常工作的情况下,实时有效的检测并修复1 bit SEU。以2 bit进位加法器为例,通过仿真实验,验证了胚胎电子细胞的SEU自检和自修复能力。展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.HIT.KISTP.201404)Harbin science and innovation research special fund(No.2015RAXXJ003)Special fund for development of Shenzhen strategic emerging industries(No.JCYJ20150625142543456)
文摘Heavy ion-induced single event upsets(SEUs)of static random access memory(SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4 simulation toolkit. The SEU cross sections and multiple cell upset(MCU) susceptibility of 3D SRAM are explored using different types and energies of heavy ions.In the simulations, the sensitivities of different dies of 3D SRAM show noticeable discrepancies for low linear energy transfers(LETs). The average percentage of MCUs of 3D SRAM increases from 17.2 to 32.95%, followed by the energy of ^(209)Bi decreasing from 71.77 to 38.28 MeV/u. For a specific LET, the percentage of MCUs presents a notable difference between the face-to-face and back-toface structures. In the back-to-face structure, the percentage of MCUs increases with a deeper die, compared with the face-to-face structure. The simulation method and process are verified by comparing the SEU cross sections of planar SRAM with experimental data. The upset cross sections of the planar process and 3D integrated SRAM are analyzed. The results demonstrate that the 3D SRAM sensitivity is not greater than that of the planar SRAM. The 3D process technology has the potential to be applied to the aerospace and military fields.
文摘This paper reviews the status of research in modeling and simulation of single-event effects(SEE) in digital devices and integrated circuits. After introducing a brief historical overview of SEE simulation, different level simulation approaches of SEE are detailed, including material-level physical simulation where two primary methods by which ionizing radiation releases charge in a semiconductor device(direct ionization and indirect ionization) are introduced, device-level simulation where the main emerging physical phenomena affecting nanometer devices(bipolar transistor effect, charge sharing effect) and the methods envisaged for taking them into account are focused on, and circuit-level simulation where the methods for predicting single-event response about the production and propagation of single-event transients(SETs) in sequential and combinatorial logic are detailed, as well as the soft error rate trends with scaling are particularly addressed.
文摘胚胎电子细胞的基因循环存储模块在辐射空间容易受到单粒子翻转(SEU)影响,由于缺乏有效的自检手段,严重制约了胚胎电子阵列在深空等辐射环境中的应用。本文设计了一种新型的具有SEU自修复能力的触发器单元,并结合汉明纠错码,设计了一种新型的具有SEU自检和自修复能力的基因循环存储模块,可以在维持胚胎电子细胞阵列正常工作的情况下,实时有效的检测并修复1 bit SEU。以2 bit进位加法器为例,通过仿真实验,验证了胚胎电子细胞的SEU自检和自修复能力。