This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force...This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force/torque, whose limitation is analyzed andrevealed. The nonlinear factors and the servo valve dynamics have much influence on the systemcharacteristics. Subsequently a velocity syn-chronizing-compensation method by using the controlsignal of the control actuator is proposed, which can reduce the lagging effects for the betterperformance. For the reason of similarity between the model of control actuator and that of the loadsimulator, the proposed method performs well against the influence of nonlinear factors. Thesimulations and the experiments confirm that this control scheme results in a quick response,robustness, and excellent ability against disturbance.展开更多
Directing to the strong position coupling problem of electro-hydraulic load simulator (EHLS), this article presents an adaptive nonlinear optimal compensation control strategy based on two estimated nonlinear paramete...Directing to the strong position coupling problem of electro-hydraulic load simulator (EHLS), this article presents an adaptive nonlinear optimal compensation control strategy based on two estimated nonlinear parameters, viz. the flow gain coefficient of servo valve and total factors of flow-pressure coefficient. Taking trace error of torque control system to zero as control object, this article designs the adaptive nonlinear optimal compensation control strategy, which regards torque control output of closed-loop controller converging to zero as the control target, to optimize torque tracking performance. Electro-hydraulic load simulator is a typical case of the torque system which is strongly coupled with a hydraulic positioning system. This article firstly builds and analyzes the mathematical models of hydraulic torque and positioning system, then designs an adaptive nonlinear optimal compensation controller, proves the validity of parameters estimation, and shows the comparison data among three control structures with various typical operating conditions, including proportion-integral-derivative (PID) controller only, the velocity synchronizing controller plus P1D controller and the proposed adaptive nonlinear optimal compensation controller plus PID controller. Experimental results show that systems' nonlinear parameters are estimated exactly using the proposed method, and the trace accuracy of the torque system is greatly enhanced by adaptive nonlinear optimal compensation control, and the torque servo system capability against sudden disturbance can be greatly improved.展开更多
Net primary productivity (NPP) is the structure and function of the ecosystem. NPP can most important index that represents the be simulated by dynamic global vegetation models (DGVM), which are designed to repres...Net primary productivity (NPP) is the structure and function of the ecosystem. NPP can most important index that represents the be simulated by dynamic global vegetation models (DGVM), which are designed to represent vegetation dynamics relative to environ- mental change. This study simulated the NPP of China's ecosystems based on the DGVM Integrated Biosphere Simulator (IBIS) with data on climate, soil, and topography. The appli- cability of IBIS in the NPP simulation of China's terrestrial ecosystems was verified first. Comparison with other relevant studies indicates that the range and mean value of simula- tions are generally within the limits of observations; the overall pattern and total annual NPP are close to the simulations conducted with other models. The simulations are also close to the NPP estimations based on remote sensing. Validation proved that IBIS can be utilized in the large-scale simulation of NPP in China's natural ecosystem. We then simulated NPP with climate change data from 1961 to 2005, when warming was particularly striking. The following are the results of the simulation. (1) Total NPP varied from 3.61 GtC/yr to 4.24 GtC/yr in the past 45 years and exhibited minimal significant linear increase or decrease. (2) Regional differences in the increase or decrease in NPP were large but exhibited an insignificant overall linear trend. NPP declined in most parts of eastern and central China, especially in the Loess Plateau. (3) Similar to the fluctuation law of annual NPP, seasonal NPP also displayed an insignificant increase or decrease; the trend line was within the general level. (4) The re- gional differences in seasonal NPP changes were large. NPP declined in spring, summer, and autumn in the Loess Plateau but increased in most parts of the Tibetan Plateau.展开更多
文摘This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force/torque, whose limitation is analyzed andrevealed. The nonlinear factors and the servo valve dynamics have much influence on the systemcharacteristics. Subsequently a velocity syn-chronizing-compensation method by using the controlsignal of the control actuator is proposed, which can reduce the lagging effects for the betterperformance. For the reason of similarity between the model of control actuator and that of the loadsimulator, the proposed method performs well against the influence of nonlinear factors. Thesimulations and the experiments confirm that this control scheme results in a quick response,robustness, and excellent ability against disturbance.
基金National Natural Science Foundation of China (50825502)
文摘Directing to the strong position coupling problem of electro-hydraulic load simulator (EHLS), this article presents an adaptive nonlinear optimal compensation control strategy based on two estimated nonlinear parameters, viz. the flow gain coefficient of servo valve and total factors of flow-pressure coefficient. Taking trace error of torque control system to zero as control object, this article designs the adaptive nonlinear optimal compensation control strategy, which regards torque control output of closed-loop controller converging to zero as the control target, to optimize torque tracking performance. Electro-hydraulic load simulator is a typical case of the torque system which is strongly coupled with a hydraulic positioning system. This article firstly builds and analyzes the mathematical models of hydraulic torque and positioning system, then designs an adaptive nonlinear optimal compensation controller, proves the validity of parameters estimation, and shows the comparison data among three control structures with various typical operating conditions, including proportion-integral-derivative (PID) controller only, the velocity synchronizing controller plus P1D controller and the proposed adaptive nonlinear optimal compensation controller plus PID controller. Experimental results show that systems' nonlinear parameters are estimated exactly using the proposed method, and the trace accuracy of the torque system is greatly enhanced by adaptive nonlinear optimal compensation control, and the torque servo system capability against sudden disturbance can be greatly improved.
基金"Strategic Priority Research Program of China"of the Chinese Academy of Sciences,No.XDA05090307National Key Technology R&D Program of the 12th Five-Year Plan,No.2012BAC19B10Open Project of Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration,No.SHUES2012A04
文摘Net primary productivity (NPP) is the structure and function of the ecosystem. NPP can most important index that represents the be simulated by dynamic global vegetation models (DGVM), which are designed to represent vegetation dynamics relative to environ- mental change. This study simulated the NPP of China's ecosystems based on the DGVM Integrated Biosphere Simulator (IBIS) with data on climate, soil, and topography. The appli- cability of IBIS in the NPP simulation of China's terrestrial ecosystems was verified first. Comparison with other relevant studies indicates that the range and mean value of simula- tions are generally within the limits of observations; the overall pattern and total annual NPP are close to the simulations conducted with other models. The simulations are also close to the NPP estimations based on remote sensing. Validation proved that IBIS can be utilized in the large-scale simulation of NPP in China's natural ecosystem. We then simulated NPP with climate change data from 1961 to 2005, when warming was particularly striking. The following are the results of the simulation. (1) Total NPP varied from 3.61 GtC/yr to 4.24 GtC/yr in the past 45 years and exhibited minimal significant linear increase or decrease. (2) Regional differences in the increase or decrease in NPP were large but exhibited an insignificant overall linear trend. NPP declined in most parts of eastern and central China, especially in the Loess Plateau. (3) Similar to the fluctuation law of annual NPP, seasonal NPP also displayed an insignificant increase or decrease; the trend line was within the general level. (4) The re- gional differences in seasonal NPP changes were large. NPP declined in spring, summer, and autumn in the Loess Plateau but increased in most parts of the Tibetan Plateau.