[ Objective ] The paper was to evaluate the fermentation quality of mixed silage of Lablab purpureus and sweet sorghum, and to find out the appropriate mixing ratio. [ Method] L. purpureus were mixed with sweet sorghu...[ Objective ] The paper was to evaluate the fermentation quality of mixed silage of Lablab purpureus and sweet sorghum, and to find out the appropriate mixing ratio. [ Method] L. purpureus were mixed with sweet sorghum at different proportions, to identify the sensory character and quality of silage. [ Result] The nutrient content of mixed silage of L. purpureus and sweet sorghum at different proportions decreased significantly at 30 - 60 d, while no significant changes were observed after 60 d. Mixed silage of L. purpureu.s and sweet sorghum had the best effort at the proportion of 3:7 ; followed by the proportion of 5: 5. These two proportions significantly improved dry matter (DM) content and effectively alleviated the crude protein (CP) loss of raw materials; significantly improved the contents of crude fiber and crude ash; and significantly reduce ammonia nitrogen/total nitrogen (AT/TN). [ Conclusion ] From the perspective of silage quality, the appropriate mixing ratio ofL. purpureus and sweet sorghum is 3:7 or 5:5.展开更多
Whole crop forage sorghum (Saccharatum) cultivar FS5 was harvested at the soft dough stage of maturity. The sorghum was chopped to approximately 2 cm pieces and ensiled under laboratory conditions in 1.5 L Weck glass ...Whole crop forage sorghum (Saccharatum) cultivar FS5 was harvested at the soft dough stage of maturity. The sorghum was chopped to approximately 2 cm pieces and ensiled under laboratory conditions in 1.5 L Weck glass jars. At ensiling, it was treated with two commercial microbial inoculants: inoculant A and inoculant B. The inoculants were applied at 2 × 105 colony forming units g-1 DM. Silage with no additives served as a control. Three jars per treatment were opened on days 2, 4, 8, 15 and 60 post-ensiling to study fermentation dynamics. After 60 days of ensiling, the silages were analyzed and subjected to an aerobic stability test lasting 5 days. Results showed that both inoculants caused a more rapid rate of pH decline and a higher amount of lactic acid production. Silages treated with each inoculant produced a little more CO2 and resulted in more glucose loss as compared with the control. Addition of inoculants did not influence (P > 0.05) the ash and crude protein contents, but tended to decrease the concentration of acetic acid (P < 0.05), butyric acid (P<0.01) and propionic acid (P<0.01), and increase the lactic acid concentration (P<0.01). Silages treated with inoculant A possess the more DM loss, and the higher yeast counts upon aerobic exposure. Silage treated with inoculant B had the most DM (P<0.05), lactic acid contents (P<0.01), the least acetic acid content (P<0.05). Inoculant B reduced the ADF (P<0.01), ADL and NDF (P<0.05) contents. It was concluded that lactic bacteria inoculants may improve the fermentation but might impair the aerobic stability for sorghum ensilage.展开更多
基金Supported by Major Project of Science and Technology Plan in Hunan Province(2017NK1020)
文摘[ Objective ] The paper was to evaluate the fermentation quality of mixed silage of Lablab purpureus and sweet sorghum, and to find out the appropriate mixing ratio. [ Method] L. purpureus were mixed with sweet sorghum at different proportions, to identify the sensory character and quality of silage. [ Result] The nutrient content of mixed silage of L. purpureus and sweet sorghum at different proportions decreased significantly at 30 - 60 d, while no significant changes were observed after 60 d. Mixed silage of L. purpureu.s and sweet sorghum had the best effort at the proportion of 3:7 ; followed by the proportion of 5: 5. These two proportions significantly improved dry matter (DM) content and effectively alleviated the crude protein (CP) loss of raw materials; significantly improved the contents of crude fiber and crude ash; and significantly reduce ammonia nitrogen/total nitrogen (AT/TN). [ Conclusion ] From the perspective of silage quality, the appropriate mixing ratio ofL. purpureus and sweet sorghum is 3:7 or 5:5.
文摘Whole crop forage sorghum (Saccharatum) cultivar FS5 was harvested at the soft dough stage of maturity. The sorghum was chopped to approximately 2 cm pieces and ensiled under laboratory conditions in 1.5 L Weck glass jars. At ensiling, it was treated with two commercial microbial inoculants: inoculant A and inoculant B. The inoculants were applied at 2 × 105 colony forming units g-1 DM. Silage with no additives served as a control. Three jars per treatment were opened on days 2, 4, 8, 15 and 60 post-ensiling to study fermentation dynamics. After 60 days of ensiling, the silages were analyzed and subjected to an aerobic stability test lasting 5 days. Results showed that both inoculants caused a more rapid rate of pH decline and a higher amount of lactic acid production. Silages treated with each inoculant produced a little more CO2 and resulted in more glucose loss as compared with the control. Addition of inoculants did not influence (P > 0.05) the ash and crude protein contents, but tended to decrease the concentration of acetic acid (P < 0.05), butyric acid (P<0.01) and propionic acid (P<0.01), and increase the lactic acid concentration (P<0.01). Silages treated with inoculant A possess the more DM loss, and the higher yeast counts upon aerobic exposure. Silage treated with inoculant B had the most DM (P<0.05), lactic acid contents (P<0.01), the least acetic acid content (P<0.05). Inoculant B reduced the ADF (P<0.01), ADL and NDF (P<0.05) contents. It was concluded that lactic bacteria inoculants may improve the fermentation but might impair the aerobic stability for sorghum ensilage.