The weight of shelled shrimp is an important parameter for grading process.The weight prediction of shelled shrimp by contour area is not accurate enough because of the ignorance of the shrimp thickness.In this paper,...The weight of shelled shrimp is an important parameter for grading process.The weight prediction of shelled shrimp by contour area is not accurate enough because of the ignorance of the shrimp thickness.In this paper,a multivariate prediction model containing area,perimeter,length,and width was established.A new calibration algorithm for extracting length of shelled shrimp was proposed,which contains binary image thinning,branch recognition and elimination,and length reconstruction,while its width was calculated during the process of length extracting.The model was further validated with another set of images from 30 shelled shrimps.For a comparison purpose,artificial neural network(ANN) was used for the shrimp weight predication.The ANN model resulted in a better prediction accuracy(with the average relative error at 2.67%),but took a tenfold increase in calculation time compared with the weight-area-perimeter(WAP) model(with the average relative error at 3.02%).We thus conclude that the WAP model is a better method for the prediction of the weight of shelled red shrimp.展开更多
The effect of four bottom substrates, oyster shell powder(OP), sugarcane bagasse(SB), a mixture of OP and SB(OS) and fresh soil(FS), on the water quality and bacterial and zooplankton density of intensive shrimp(Litop...The effect of four bottom substrates, oyster shell powder(OP), sugarcane bagasse(SB), a mixture of OP and SB(OS) and fresh soil(FS), on the water quality and bacterial and zooplankton density of intensive shrimp(Litopenaeus vannamei) culture tanks without water change and the growth performance of cultured shrimp were compared in this study. At the end of a 110 days culturing trial, the total ammonium-N(TAN) of the water on SB and the nitrite nitrogen(NO2-N) on OS was significantly lower than that on the other substrates(P<0.05), which coincided with the high density of ammonium- and nitrite-oxidizing bacteria in the water on SB and OS, respectively. The concentration of chlorophyll a(Chl a) increased slowly on OP, SB and OS but remained low on FS. The density of total bacteria on OP, SB and OS was one order of magnitude higher than that on FS, and the density of zooplankton on SB and OS was significantly higher than that on FS or OP(P<0.05). The improved water quality and increased density of bacteria and zooplankton on SB and OS may have had a synergistic effect on shrimp culture, improving its growth performance(high survival rate and yield and low feed conversion rate). SB and OS were more effective for improving the growth performance of intensively cultured L. vannamei without water change than OP and FS. To our knowledge, this study presents the first evidence regarding the effect of different bottom substrates on intensive shrimp culture.展开更多
文摘The weight of shelled shrimp is an important parameter for grading process.The weight prediction of shelled shrimp by contour area is not accurate enough because of the ignorance of the shrimp thickness.In this paper,a multivariate prediction model containing area,perimeter,length,and width was established.A new calibration algorithm for extracting length of shelled shrimp was proposed,which contains binary image thinning,branch recognition and elimination,and length reconstruction,while its width was calculated during the process of length extracting.The model was further validated with another set of images from 30 shelled shrimps.For a comparison purpose,artificial neural network(ANN) was used for the shrimp weight predication.The ANN model resulted in a better prediction accuracy(with the average relative error at 2.67%),but took a tenfold increase in calculation time compared with the weight-area-perimeter(WAP) model(with the average relative error at 3.02%).We thus conclude that the WAP model is a better method for the prediction of the weight of shelled red shrimp.
基金supported by National Science and Technology Supporting Program of the Twelfth Five-Year Plan of China (2011BAD13B10)the Special Fund for Agro-scientific Research in the Public Interest, China (201103034)
文摘The effect of four bottom substrates, oyster shell powder(OP), sugarcane bagasse(SB), a mixture of OP and SB(OS) and fresh soil(FS), on the water quality and bacterial and zooplankton density of intensive shrimp(Litopenaeus vannamei) culture tanks without water change and the growth performance of cultured shrimp were compared in this study. At the end of a 110 days culturing trial, the total ammonium-N(TAN) of the water on SB and the nitrite nitrogen(NO2-N) on OS was significantly lower than that on the other substrates(P<0.05), which coincided with the high density of ammonium- and nitrite-oxidizing bacteria in the water on SB and OS, respectively. The concentration of chlorophyll a(Chl a) increased slowly on OP, SB and OS but remained low on FS. The density of total bacteria on OP, SB and OS was one order of magnitude higher than that on FS, and the density of zooplankton on SB and OS was significantly higher than that on FS or OP(P<0.05). The improved water quality and increased density of bacteria and zooplankton on SB and OS may have had a synergistic effect on shrimp culture, improving its growth performance(high survival rate and yield and low feed conversion rate). SB and OS were more effective for improving the growth performance of intensively cultured L. vannamei without water change than OP and FS. To our knowledge, this study presents the first evidence regarding the effect of different bottom substrates on intensive shrimp culture.