期刊文献+

Prediction of shelled shrimp weight by machine vision 被引量:2

Prediction of shelled shrimp weight by machine vision
原文传递
导出
摘要 The weight of shelled shrimp is an important parameter for grading process.The weight prediction of shelled shrimp by contour area is not accurate enough because of the ignorance of the shrimp thickness.In this paper,a multivariate prediction model containing area,perimeter,length,and width was established.A new calibration algorithm for extracting length of shelled shrimp was proposed,which contains binary image thinning,branch recognition and elimination,and length reconstruction,while its width was calculated during the process of length extracting.The model was further validated with another set of images from 30 shelled shrimps.For a comparison purpose,artificial neural network(ANN) was used for the shrimp weight predication.The ANN model resulted in a better prediction accuracy(with the average relative error at 2.67%),but took a tenfold increase in calculation time compared with the weight-area-perimeter(WAP) model(with the average relative error at 3.02%).We thus conclude that the WAP model is a better method for the prediction of the weight of shelled red shrimp. The weight of shelled shrimp is an important parameter for grading process. The weight prediction of shelled shrimp by contour area is not accurate enough because of the ignorance of the shrimp thickness. In this paper, a multivariate prediction model containing area, perimeter, length, and width was established. A new calibration algorithm for extracting length of shelled shrimp was proposed, which contains binary image thinning, branch recognition and elimination, and length reconstruction, while its width was calculated during the process of length extracting. The model was further validated with another set of images from 30 shelled shrimps. For a comparison purpose, artificial neural network (ANN) was used for the shrimp weight predication. The ANN model resulted in a better prediction accuracy (with the average relative error at 2.67%), but took a tenfold increase in calculation time compared with the weight-area-perimeter (WAP) model (with the average relative error at 3.02%). We thus conclude that the WAP model is a better method for the prediction of the weight of shelled red shrimp.
出处 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2009年第8期589-594,共6页 浙江大学学报(英文版)B辑(生物医学与生物技术)
关键词 Shelled shrimp Image Feature Length extracting Weight prediction Weight-area-perimeter (WAP) model 预测模型 虾仁 机器视觉 体重 炮击 人工神经网络模型 平均增长率 长度计算
  • 相关文献

参考文献13

  • 1林艾光,孙宝元,矢田贞美.基于机器视觉的虾夷扇贝分级检测方法研究[J].水产学报,2006,30(3):397-403. 被引量:18
  • 2陈红,丁幼春,熊利荣,文友先.鸭蛋品质无损自动检测分级系统[J].农业机械学报,2004,35(6):127-129. 被引量:19
  • 3Xu Jian-yu,Miao Xiang-wen,Liu Ying,Cui Shao-rong.Behavioral response of tilapia (Oreochromis niloticus) to acute ammonia stress monitored by computer vision[J].Journal of Zhejiang University Science B.2005(8) 被引量:1
  • 4Dunbrack,R.L.In situ measurement of fish body length using perspective-based remote stereo-video[].Fisheries Research.2006 被引量:1
  • 5Kassler,M,Corke,P,Wong,P.Automatic grading and packing of prawns[].Computers and Electronics in Agri-culture.1993 被引量:1
  • 6K?van? K?l??a,?smail Hakki Boyac?a,Hamit K?ksela,?smail Küsmeno?lub.A classification system for beans using computer vision system and artificial neural networks[].Journal of Food Engineering.2007 被引量:1
  • 7Menesatti,P,Zanella,A,D′Andrea,S,Costa,C,Paglia,G,Pallottino,F.Supervised multivariate analysis of hyperspectral NIR images to evaluate the starch index of apples[].Food and Bioprocess Technology.2009 被引量:1
  • 8Systat Software Inc.TableCurve3D for Windows. Version 4.0[]..2002 被引量:1
  • 9Systat Software Inc.TableCurve2D for Windows. Version 5.01[]..2002 被引量:1
  • 10Xu,J.Y,Miao,X.W,Liu,Y,Cui,S.R.Behavioral response of tilapia (Oreochromis niloticus) to acute ammonia stress monitored by computer vision[].Journal of Zhejiang University SCIENCE B.2005 被引量:1

二级参考文献13

  • 1章毓晋.图像工程(上册)-图像处理和分析[M].北京:清华大学出版社,1999.254-269. 被引量:7
  • 2陈兵旗 孙明.Visual c++实用图像处理[M].北京:清华大学出版社,2004.84-88. 被引量:10
  • 3朱志刚 石定机.数字图像处理[M].电子工业出版社,2002.. 被引量:6
  • 4Castleman K R.数字图像.朱志刚 等译.北京:电子工业出版社,1998. 被引量:1
  • 5波部忠重,小菅貞男.标准原色圖鑑全集.3,貝[M].大坂:保育社,1967. 被引量:1
  • 6境一郎.日本におけるほたて貝增養殖[M].札幌:水產北海道協会,1976. 被引量:1
  • 7北海道水产新聞社.新版·ホタテガイ取扱の手引き[M].札幌:北海水产新闻社,1992. 被引量:1
  • 8王如学,王昭萍,张建中.海水贝类养殖学[M].青岛:青岛海洋大学出版社,1993. 被引量:1
  • 9見上隆克.水产シリ一ズ31.ホタテ貝の增養殖と利用-增養殖の体系化にむけて.5,機械化技术の考え方[M].东京:恒星社厚生閣,1980. 被引量:1
  • 10森勝義,菅原義雄,小畑一臣.三陸沿岸における養殖ホタテ貝の大量へい死に関する研究Ⅰ.贫栄養+振动の兩實驗下で発生するへい死について[J].魚病研究,1974,(9):10-18. 被引量:1

共引文献35

同被引文献55

引证文献2

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部