Sheet bulk metal forming is widely used for medium thick metal plate due to its convenience in the manu- facture of accurately finished 3D functional components. To obtain precise anisotropy and flow curve of metal pl...Sheet bulk metal forming is widely used for medium thick metal plate due to its convenience in the manu- facture of accurately finished 3D functional components. To obtain precise anisotropy and flow curve of metal plate is a prerequisite for correct simulation of sheet bulk metal forming processes. Inverse analysis of compression test was introduced here to evaluate the sensitivity of different flow curve models and geometric influence of compression test specimen. Besides, a methodology was proposed to compute plastic anisotropic coefficients of Hill quadratic yield cri- terion, which is based on the ratios of flow curves obtained by inverse analysis of compression tests using specimens cut in six directions on the medium-thick metal plate. The obtained flow curves and anisotropic coefficients were compared with those calculated from tensile tests. Flow curves based on inverse analysis of compression tests cover the curves of the tensile tests well, while the anisotropic coefficients are different, especially for the coefficient relat- ed to the RT45 direction. To estimate the effectiveness of the proposed method, the calculated material properties and those based on the traditional tensile tests were applied in a rim-hole process simulation. The simulation results based on the material properties from inverse analysis of compression tests accorded with the tested properties better.展开更多
Sheet bulk metal forming processes have been widely developed to the facilitate manufacture of complicated 3D parts. However, there is still not enough know-how available. In this paper, as one of the typical sheet bu...Sheet bulk metal forming processes have been widely developed to the facilitate manufacture of complicated 3D parts. However, there is still not enough know-how available. In this paper, as one of the typical sheet bulk metal forming processes, the sheet metal extrusion process was studied. A reasonable finite element method (FEM) model of sheet metal extrusion process taking the influence of flow-stress curve with wide range of plastic strain and ductile damage into consideration was established and simulated by an arbitrary Lagrangian-Eulerian (ALE) FEM implemented in MSC.Marc. Validated by comparing the results with experiment, some phenomenological characteristics, such as metal flow behavior, shrinkage cavity, and the influence of different combinations of diameter of punch, diameter of extrusion outlet, and diameter of pre-punched hole were analyzed and concluded, which can be used as theoretical fundamental for the design of the sheet metal extrusion process.展开更多
基金Sponsored by National Natural Science Foundation of China(51105250)National Science and Technology Specific Projects of China(2011ZX04016-051)
文摘Sheet bulk metal forming is widely used for medium thick metal plate due to its convenience in the manu- facture of accurately finished 3D functional components. To obtain precise anisotropy and flow curve of metal plate is a prerequisite for correct simulation of sheet bulk metal forming processes. Inverse analysis of compression test was introduced here to evaluate the sensitivity of different flow curve models and geometric influence of compression test specimen. Besides, a methodology was proposed to compute plastic anisotropic coefficients of Hill quadratic yield cri- terion, which is based on the ratios of flow curves obtained by inverse analysis of compression tests using specimens cut in six directions on the medium-thick metal plate. The obtained flow curves and anisotropic coefficients were compared with those calculated from tensile tests. Flow curves based on inverse analysis of compression tests cover the curves of the tensile tests well, while the anisotropic coefficients are different, especially for the coefficient relat- ed to the RT45 direction. To estimate the effectiveness of the proposed method, the calculated material properties and those based on the traditional tensile tests were applied in a rim-hole process simulation. The simulation results based on the material properties from inverse analysis of compression tests accorded with the tested properties better.
基金supported by National Science & Technology Major Project of China (No. 2009ZX04014-073)National Natural Science Foundation of China (No. 50975175)
文摘Sheet bulk metal forming processes have been widely developed to the facilitate manufacture of complicated 3D parts. However, there is still not enough know-how available. In this paper, as one of the typical sheet bulk metal forming processes, the sheet metal extrusion process was studied. A reasonable finite element method (FEM) model of sheet metal extrusion process taking the influence of flow-stress curve with wide range of plastic strain and ductile damage into consideration was established and simulated by an arbitrary Lagrangian-Eulerian (ALE) FEM implemented in MSC.Marc. Validated by comparing the results with experiment, some phenomenological characteristics, such as metal flow behavior, shrinkage cavity, and the influence of different combinations of diameter of punch, diameter of extrusion outlet, and diameter of pre-punched hole were analyzed and concluded, which can be used as theoretical fundamental for the design of the sheet metal extrusion process.