Nonverbal and noncontact behaviors play a significant role in allowing service robots to structure their interactions withhumans.In this paper, a novel human-mimic mechanism of robot’s navigational skills was propose...Nonverbal and noncontact behaviors play a significant role in allowing service robots to structure their interactions withhumans.In this paper, a novel human-mimic mechanism of robot’s navigational skills was proposed for developing sociallyacceptable robotic etiquette.Based on the sociological and physiological concerns of interpersonal interactions in movement,several criteria in navigation were represented by constraints and incorporated into a unified probabilistic cost grid for safemotion planning and control, followed by an emphasis on the prediction of the human’s movement for adjusting the robot’spre-collision navigational strategy.The human motion prediction utilizes a clustering-based algorithm for modeling humans’indoor motion patterns as well as the combination of the long-term and short-term tendency prediction that takes into accountthe uncertainties of both velocity and heading direction.Both simulation and real-world experiments verified the effectivenessand reliability of the method to ensure human’s safety and comfort in navigation.A statistical user trials study was also given tovalidate the users’favorable views of the human-friendly navigational behavior.展开更多
基金supported by the National High Technology Research and Development Program(863 Program)of China(Grant No.2006AA040202 and No.2007AA041703)the National Natural Science Foundation of China(Grant No.60805032)
文摘Nonverbal and noncontact behaviors play a significant role in allowing service robots to structure their interactions withhumans.In this paper, a novel human-mimic mechanism of robot’s navigational skills was proposed for developing sociallyacceptable robotic etiquette.Based on the sociological and physiological concerns of interpersonal interactions in movement,several criteria in navigation were represented by constraints and incorporated into a unified probabilistic cost grid for safemotion planning and control, followed by an emphasis on the prediction of the human’s movement for adjusting the robot’spre-collision navigational strategy.The human motion prediction utilizes a clustering-based algorithm for modeling humans’indoor motion patterns as well as the combination of the long-term and short-term tendency prediction that takes into accountthe uncertainties of both velocity and heading direction.Both simulation and real-world experiments verified the effectivenessand reliability of the method to ensure human’s safety and comfort in navigation.A statistical user trials study was also given tovalidate the users’favorable views of the human-friendly navigational behavior.