文章研究了多用户上行传输过程毫米波大规模多输入多输出(multi-input and multi-output,MIMO)系统的波束选择问题,提出了一种基于深度学习的波束选择方法。针对使用透镜的多用户毫米波大规模MIMO上行传输过程,提出一种面向波束选择的...文章研究了多用户上行传输过程毫米波大规模多输入多输出(multi-input and multi-output,MIMO)系统的波束选择问题,提出了一种基于深度学习的波束选择方法。针对使用透镜的多用户毫米波大规模MIMO上行传输过程,提出一种面向波束选择的深度学习框架,通过信道数据预先对神经网络进行离线训练,然后将实测信号输入训练好的神经网络在线预测信道直达径对应的波束,从而实现波束选择;基于该深度学习框架制定了具体的训练细则,采用柔性最大值交叉熵函数作为损失函数,使用自适应矩估计优化器优化神经网络参数。仿真结果表明,该文提出的基于深度学习的波束选择方法优于现有的正交匹配追踪方法。展开更多
文摘文章研究了多用户上行传输过程毫米波大规模多输入多输出(multi-input and multi-output,MIMO)系统的波束选择问题,提出了一种基于深度学习的波束选择方法。针对使用透镜的多用户毫米波大规模MIMO上行传输过程,提出一种面向波束选择的深度学习框架,通过信道数据预先对神经网络进行离线训练,然后将实测信号输入训练好的神经网络在线预测信道直达径对应的波束,从而实现波束选择;基于该深度学习框架制定了具体的训练细则,采用柔性最大值交叉熵函数作为损失函数,使用自适应矩估计优化器优化神经网络参数。仿真结果表明,该文提出的基于深度学习的波束选择方法优于现有的正交匹配追踪方法。