期刊文献+

基于深度学习的上行传输过程毫米波通信波束选择方法 被引量:2

Deep learning based beam selection for uplink millimeter wave communications
下载PDF
导出
摘要 文章研究了多用户上行传输过程毫米波大规模多输入多输出(multi-input and multi-output,MIMO)系统的波束选择问题,提出了一种基于深度学习的波束选择方法。针对使用透镜的多用户毫米波大规模MIMO上行传输过程,提出一种面向波束选择的深度学习框架,通过信道数据预先对神经网络进行离线训练,然后将实测信号输入训练好的神经网络在线预测信道直达径对应的波束,从而实现波束选择;基于该深度学习框架制定了具体的训练细则,采用柔性最大值交叉熵函数作为损失函数,使用自适应矩估计优化器优化神经网络参数。仿真结果表明,该文提出的基于深度学习的波束选择方法优于现有的正交匹配追踪方法。 In this paper, the beam selection for uplink multi-user millimeter wave massive multi-input and multi-output(MIMO) systems is studied, and a beam selection method based on deep learning is proposed. In view of the multi-user millimeter wave massive MIMO uplink transmission with lens antenna array, we first propose a deep learning framework for beam selection. The neural network is trained offline using the channel data, and then the received signal is input into the trained neural network to predict the beam corresponding to the line of sight(LOS) channel path. Then specific training rules are developed based on the proposed deep learning framework. We use the softmax cross entropy function as the loss function, and use the adaptive moment estimation(Adam) optimizer to optimize the parameters of the neural network. Simulation results show that the proposed deep learning based method outperforms the existing method based on orthogonal matching pursuit(OMP).
作者 马文焱 戚晨皓 MA Wenyan;QI Chenhao(School of Information Science and Engineering,Southeast University,Nanjing 210096,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2019年第12期1644-1648,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61871119) 江苏省基础研究计划资助项目(BK20161428) 上海航天科技创新基金资助项目(SAST2016072)
关键词 毫米波通信 波束选择 深度学习 透镜阵列 大规模多输入多输出(MIMO)系统 millimeter wave communications beam selection deep learning lens antenna array massive multi-input and multi-output(MIMO)system
  • 相关文献

参考文献6

二级参考文献69

  • 1赵明华,游志胜,吕学斌,穆万军.基于ICA和FLD相结合的人脸识别[J].计算机应用研究,2005,22(8):255-257. 被引量:4
  • 2BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36. 被引量:1
  • 3BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127. 被引量:1
  • 4HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554. 被引量:1
  • 5BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160. 被引量:1
  • 6LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324. 被引量:1
  • 7VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103. 被引量:1
  • 8VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408. 被引量:1
  • 9YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288. 被引量:1
  • 10POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690. 被引量:1

共引文献724

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部