The Zechstein (Upper Permian) salts are extensively distributed in the Northeast German Basin (NEGB). Their formation and movements have attracted great attention to discovering the accumulation and exploration of hyd...The Zechstein (Upper Permian) salts are extensively distributed in the Northeast German Basin (NEGB). Their formation and movements have attracted great attention to discovering the accumulation and exploration of hydrocarbon sources, as well as the salt production. But the previous studies are validated in cases and a general view on these studies is scarce. By analyzing and integrating previous studies, the history and structure evolution of Zechstein salts were reviewed in this paper. Seven cycles of Zechstein salt (Na1, Na2, Na3, Na4, Na5, Na6, Na7) with distinct composition and thickness were deposited after a series of marine transgressions and regressions during the Upper Permian. The Na1 (300 m) locally developed in a lagoon environment. The thick Na2 (over 500 m) was widely deposited in the whole basin. The Na3, Na4, Na5, Na6 and Na7 decreased progressively in thickness and distribution. These salts should have been moved as a result of regional tectonics taking place from Triassic to Early Cenozoic, which changes the original distribution of salts, resulting in the formation of different salt structures (pillows and diapirs). Salt movement was more intensive in central and southern parts of the basin forming narrow and widely-distributed salt diapirs, while it was less intensive in the northern parts where salt pillows are the major structure. The salt meadow and saline springs are also present, which are attributed to the salinization of the groundwater. By this study, we review the history and structure development of the Zechstein salt in the NEGB by associating each individual study and figure out the common and regional characters of the salt in this region.展开更多
Hydrogeological investigations, tectonics and seismic reflection show the complexity of the Horchane groundwater and drainage possibilities with neighboring groundwater in central Tunisia. Seismic reflection lines int...Hydrogeological investigations, tectonics and seismic reflection show the complexity of the Horchane groundwater and drainage possibilities with neighboring groundwater in central Tunisia. Seismic reflection lines intersecting the region show the role of halokinetic movements, by the intrusion along preexisting faults, in the restructuring of the hydrogeological basin. The salt domes associated with a chaotic facies at the base of outcrops, that limit the Horchane basin, puch to outcrops the areas of recharge area. Geoelectric section shows the anisotropy and the importance of Mio-Plio-Quaternary (MPQ) sediment along the gutters, between the outcrops of El Hafay and Kebar on the one hand, and outcrops of Kebar and Majoura on the other. These gutters are communicated with channels that facilitate drainage of the Horchane complex groundwater by that Gammouda in North-East and Braga in East. The results of this study clearly indicate the important role of the geology in the restructuring of groundwater basins, through early halokinetic movements. (i.e. halokinetic movements). The aquifer geometry is controlled by the ascent of Triassic salt material, from the Middle Jurassic, in central Tunisia.展开更多
文摘The Zechstein (Upper Permian) salts are extensively distributed in the Northeast German Basin (NEGB). Their formation and movements have attracted great attention to discovering the accumulation and exploration of hydrocarbon sources, as well as the salt production. But the previous studies are validated in cases and a general view on these studies is scarce. By analyzing and integrating previous studies, the history and structure evolution of Zechstein salts were reviewed in this paper. Seven cycles of Zechstein salt (Na1, Na2, Na3, Na4, Na5, Na6, Na7) with distinct composition and thickness were deposited after a series of marine transgressions and regressions during the Upper Permian. The Na1 (300 m) locally developed in a lagoon environment. The thick Na2 (over 500 m) was widely deposited in the whole basin. The Na3, Na4, Na5, Na6 and Na7 decreased progressively in thickness and distribution. These salts should have been moved as a result of regional tectonics taking place from Triassic to Early Cenozoic, which changes the original distribution of salts, resulting in the formation of different salt structures (pillows and diapirs). Salt movement was more intensive in central and southern parts of the basin forming narrow and widely-distributed salt diapirs, while it was less intensive in the northern parts where salt pillows are the major structure. The salt meadow and saline springs are also present, which are attributed to the salinization of the groundwater. By this study, we review the history and structure development of the Zechstein salt in the NEGB by associating each individual study and figure out the common and regional characters of the salt in this region.
文摘Hydrogeological investigations, tectonics and seismic reflection show the complexity of the Horchane groundwater and drainage possibilities with neighboring groundwater in central Tunisia. Seismic reflection lines intersecting the region show the role of halokinetic movements, by the intrusion along preexisting faults, in the restructuring of the hydrogeological basin. The salt domes associated with a chaotic facies at the base of outcrops, that limit the Horchane basin, puch to outcrops the areas of recharge area. Geoelectric section shows the anisotropy and the importance of Mio-Plio-Quaternary (MPQ) sediment along the gutters, between the outcrops of El Hafay and Kebar on the one hand, and outcrops of Kebar and Majoura on the other. These gutters are communicated with channels that facilitate drainage of the Horchane complex groundwater by that Gammouda in North-East and Braga in East. The results of this study clearly indicate the important role of the geology in the restructuring of groundwater basins, through early halokinetic movements. (i.e. halokinetic movements). The aquifer geometry is controlled by the ascent of Triassic salt material, from the Middle Jurassic, in central Tunisia.