Suppose that G is a finite group and H is a subgroup of G. We say that H is ssemipermutable in G if HGv = GpH for any Sylow p-subgroup Gp of G with (p, |H|) = 1. We investigate the influence of s-semipermutable su...Suppose that G is a finite group and H is a subgroup of G. We say that H is ssemipermutable in G if HGv = GpH for any Sylow p-subgroup Gp of G with (p, |H|) = 1. We investigate the influence of s-semipermutable subgroups on the structure of finite groups. Some recent results are generalized and unified.展开更多
A subgroup H of a finite group G is said to be s-semipermutable in G if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. We say that a subgroup H of a finite group G is S-semiembedded in G if t...A subgroup H of a finite group G is said to be s-semipermutable in G if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. We say that a subgroup H of a finite group G is S-semiembedded in G if there exists an s-permutable subgroup T of G such that TH is s-permutable in G and T ∩ H ≤ H-sG, where HsG is an s-semipermutable subgroup of G contained in H. In this paper, we investigate the influence of S-semiembedded subgroups on the structure of finite groups.展开更多
Let a = {σi| i ∈ I} be some partition of the set of all primes P, G a finite group and σ(G) = {σi|σi ∩ π (G) ≠ Ф}. A set H of subgroups of G is said to be a complete Hall or-set of G if every member ≠...Let a = {σi| i ∈ I} be some partition of the set of all primes P, G a finite group and σ(G) = {σi|σi ∩ π (G) ≠ Ф}. A set H of subgroups of G is said to be a complete Hall or-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G for some σi ∈ σ and H contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). A subgroup H of G is said to be: σ-semipermutablc in G with respect to H if HHi x = Hi x H for all x ∈ G and all x ∈ G and all Hi ∈H such that (|H|, |Hi|) = 1; σ-semipermutable in G if H is σ-semipermutable in G with respect to some complete Hall σ-set of G. We study the structure of G being based on the assumption that some subgroups of G are σ-semipermutable in G.展开更多
We prove that a finite group G is p-supersolvable or p-nilpotent if some sub- groups of G are weakly s-semipermutable in G. Several earlier results are generalized.
基金Supported by National Natural Science Foundation of China (Grant No.10871210)Natural Science Foundation of Guangdong Province (Grant No.06023728)
文摘Suppose that G is a finite group and H is a subgroup of G. We say that H is ssemipermutable in G if HGv = GpH for any Sylow p-subgroup Gp of G with (p, |H|) = 1. We investigate the influence of s-semipermutable subgroups on the structure of finite groups. Some recent results are generalized and unified.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11371335) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant #20113402110036).
文摘A subgroup H of a finite group G is said to be s-semipermutable in G if it is permutable with every Sylow p-subgroup of G with (p, |H|) = 1. We say that a subgroup H of a finite group G is S-semiembedded in G if there exists an s-permutable subgroup T of G such that TH is s-permutable in G and T ∩ H ≤ H-sG, where HsG is an s-semipermutable subgroup of G contained in H. In this paper, we investigate the influence of S-semiembedded subgroups on the structure of finite groups.
基金Supported by NNSF(Grant No.11771409)Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences
文摘Let a = {σi| i ∈ I} be some partition of the set of all primes P, G a finite group and σ(G) = {σi|σi ∩ π (G) ≠ Ф}. A set H of subgroups of G is said to be a complete Hall or-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G for some σi ∈ σ and H contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). A subgroup H of G is said to be: σ-semipermutablc in G with respect to H if HHi x = Hi x H for all x ∈ G and all x ∈ G and all Hi ∈H such that (|H|, |Hi|) = 1; σ-semipermutable in G if H is σ-semipermutable in G with respect to some complete Hall σ-set of G. We study the structure of G being based on the assumption that some subgroups of G are σ-semipermutable in G.
基金Research of the authors is supported by NNSF of China (Grants 11171243 and 11001098), Natural Science Foundation of Jiangsu (Grant BK20140451), and University Natural Sci- ence Foundation of Jiangsu (Grant 14KJB110002).
文摘We prove that a finite group G is p-supersolvable or p-nilpotent if some sub- groups of G are weakly s-semipermutable in G. Several earlier results are generalized.