摘要
设X是有限群G的非空子集,子群H称为在G中X-ss-半置换的,如果H在G中有一个补充T,只要(p,|H|)=1,就存在x∈X,使得HPx=Px H,其中P∈Sylp(T).研究极小子群和4阶循环子群的X-ss-半置换性对有限群结构的影响,推广了以往的一些结果.
Let G be a finite group and X a nonempty subset of G. A subgroup H of G is said to be X-ss-semipermutable if H has a supplement T in G, such that H is X-permutable with every Sylow p-subgroups of T with (p, I HI ) = 1. The X-ss-semipermutability of minimal subgroups was used to characterize the structure of finite groups. Some known results were unified and generalized.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2016年第5期14-17,共4页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(11401264)
河南省高等学校重点科研基金资助项目(15A110048)
关键词
极小子群
超可解群
X-ss-半置换子群
饱和群系
minimal subgroup
supersolvable group
X-ss-semipermutable subgroup
saturated formation