In order to satisfy the requirement of high precision measurement in a high dynamic environment, a kind of gyro aided multi-accelerometer inertial measurement unit (GAMA-IMU) with six accelerometers and two gyros (...In order to satisfy the requirement of high precision measurement in a high dynamic environment, a kind of gyro aided multi-accelerometer inertial measurement unit (GAMA-IMU) with six accelerometers and two gyros (6A2G) was proposed in this paper. The available configurations have the problem of low measurement precision In a high dynamic environment due to channel coupling. The three channels were decoupled when calculating the angular velocity in the proposed configuration. The yawing and pitching angular velocity were directly measured by gyros, while only the rolling angular velocity was obtained by the GAMA-IMU indirectly from the rolling angular acceleration and quadratic component of rolling angular velocity. Then a single channel rolling angular velocity calculation model was established and the extended Kalman filter (EKF) was used to do state esti- mation. Simulations were carried out and results indicated that the calculation precision of the proposed 6A2G configuration could meet the demand of high precision measurement for a high-speed rotating carrier.展开更多
A new integrated measuring system with eight force-balance accelerometers is proposed to obtain a direct measurement of six degree-of freedom (DOF) ground motions, including three rotational and three actual transla...A new integrated measuring system with eight force-balance accelerometers is proposed to obtain a direct measurement of six degree-of freedom (DOF) ground motions, including three rotational and three actual translational acceleration components without gyroscopes. In the proposed measuring system, the relationship between the output from eight force-balance accelerometer and the six DOF motion of the measuring system under an earthquake are described by differential equations. These equations are derived from the positions and directions of the eight force-balance accelerometers in the measuring system. The third-order Runge-Kutta algorithm is used to guarantee the accuracy of the numerical calculation. All the algorithms used to compute the six DOF components of the ground motion are implemented in a real-time in Digital Signal Processor (DSP). The distortion of the measured results caused by position and direction errors of the accelerometers in the measuring system are reduced by multiplying a compensation coefficient C to the output and subtracting static zero drift from the measured results, respectively.展开更多
文摘In order to satisfy the requirement of high precision measurement in a high dynamic environment, a kind of gyro aided multi-accelerometer inertial measurement unit (GAMA-IMU) with six accelerometers and two gyros (6A2G) was proposed in this paper. The available configurations have the problem of low measurement precision In a high dynamic environment due to channel coupling. The three channels were decoupled when calculating the angular velocity in the proposed configuration. The yawing and pitching angular velocity were directly measured by gyros, while only the rolling angular velocity was obtained by the GAMA-IMU indirectly from the rolling angular acceleration and quadratic component of rolling angular velocity. Then a single channel rolling angular velocity calculation model was established and the extended Kalman filter (EKF) was used to do state esti- mation. Simulations were carried out and results indicated that the calculation precision of the proposed 6A2G configuration could meet the demand of high precision measurement for a high-speed rotating carrier.
基金supported by the National Natural Science Foundation of China under Grant No.50378086the China Seismology United Foundation under Grant No.104139.
文摘A new integrated measuring system with eight force-balance accelerometers is proposed to obtain a direct measurement of six degree-of freedom (DOF) ground motions, including three rotational and three actual translational acceleration components without gyroscopes. In the proposed measuring system, the relationship between the output from eight force-balance accelerometer and the six DOF motion of the measuring system under an earthquake are described by differential equations. These equations are derived from the positions and directions of the eight force-balance accelerometers in the measuring system. The third-order Runge-Kutta algorithm is used to guarantee the accuracy of the numerical calculation. All the algorithms used to compute the six DOF components of the ground motion are implemented in a real-time in Digital Signal Processor (DSP). The distortion of the measured results caused by position and direction errors of the accelerometers in the measuring system are reduced by multiplying a compensation coefficient C to the output and subtracting static zero drift from the measured results, respectively.