Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show th...Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show that the specimens with fast cooling after hot rolling exhibit very good mechanical properties, and the improvement of the mechanical properties can be attributed mainly to the ferrite-grain refinement. The mechanical properties increase with decreasing final cooling temperature within the range from 670 ℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony. The specimen with fast cooling after low temperature rolling shows the highest values of the mechanical properties. The effect of the ferrite grain size on the mechanical properties was greater than that of pearlite morphology in the present study. The mechanical properties of specimens by controlled rolling and cooling process without thermal treatment were greatly superior to that of the same specimens by the conventional rolling, and their tensile strength reached 490 MPa grade even in the case of low temperature rolling without controlled rolling. It might be expected to realize the substitution medium-carbon by low-carbon for 490 MPa grade cold forging steel with controlled rolling and cooling process.展开更多
In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forg...In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forging steel was investigated.The results show that the faster cooling after the deformation (especially in low temperature rolling conditions) leads to the refinement of the ferrite grain.The specimen exhibits very good mechanical properties owing to the finer ferrite grains.The pearlite morphologies can also affect the mechanical properties of low carbon cold forging steel.The mechanical properties increase with decreasing final cooling temperature within the range from 650℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony.The mechanical properties of the specimens with fast cooling after the conventional rolling are not only better than those of the specimens with slow cooling after low temperature rolling,but also almost similar to those of the specimens with fast cooling after low temperature rolling.It is suggested that fast cooling after high temperature rolling (the conventional rolling) process would be of important industrial value.展开更多
通过实验室φ350 mm 4辊轧机对V-Nb-Wi微合金化X100管线钢(%:0.057C、1.84Mn、0.25Mo)进行控轧控冷试验。结果表明,在1 100℃始轧,800~900℃终轧,100~400℃终冷温度下,X100钢的组织为针状铁素体+粒状贝氏体-下贝氏体。降低终轧温度可...通过实验室φ350 mm 4辊轧机对V-Nb-Wi微合金化X100管线钢(%:0.057C、1.84Mn、0.25Mo)进行控轧控冷试验。结果表明,在1 100℃始轧,800~900℃终轧,100~400℃终冷温度下,X100钢的组织为针状铁素体+粒状贝氏体-下贝氏体。降低终轧温度可细化组织,提高钢的强度;降低终冷温度可提高钢的强度,但使钢的韧性降低。X100管线钢的最佳轧制工艺为终轧温度850℃,终冷温度200℃。展开更多
基金Funded by Shenyang City Application Basic Research Project (No. 1071198-1-00)
文摘Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show that the specimens with fast cooling after hot rolling exhibit very good mechanical properties, and the improvement of the mechanical properties can be attributed mainly to the ferrite-grain refinement. The mechanical properties increase with decreasing final cooling temperature within the range from 670 ℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony. The specimen with fast cooling after low temperature rolling shows the highest values of the mechanical properties. The effect of the ferrite grain size on the mechanical properties was greater than that of pearlite morphology in the present study. The mechanical properties of specimens by controlled rolling and cooling process without thermal treatment were greatly superior to that of the same specimens by the conventional rolling, and their tensile strength reached 490 MPa grade even in the case of low temperature rolling without controlled rolling. It might be expected to realize the substitution medium-carbon by low-carbon for 490 MPa grade cold forging steel with controlled rolling and cooling process.
文摘In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forging steel was investigated.The results show that the faster cooling after the deformation (especially in low temperature rolling conditions) leads to the refinement of the ferrite grain.The specimen exhibits very good mechanical properties owing to the finer ferrite grains.The pearlite morphologies can also affect the mechanical properties of low carbon cold forging steel.The mechanical properties increase with decreasing final cooling temperature within the range from 650℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony.The mechanical properties of the specimens with fast cooling after the conventional rolling are not only better than those of the specimens with slow cooling after low temperature rolling,but also almost similar to those of the specimens with fast cooling after low temperature rolling.It is suggested that fast cooling after high temperature rolling (the conventional rolling) process would be of important industrial value.
文摘通过实验室φ350 mm 4辊轧机对V-Nb-Wi微合金化X100管线钢(%:0.057C、1.84Mn、0.25Mo)进行控轧控冷试验。结果表明,在1 100℃始轧,800~900℃终轧,100~400℃终冷温度下,X100钢的组织为针状铁素体+粒状贝氏体-下贝氏体。降低终轧温度可细化组织,提高钢的强度;降低终冷温度可提高钢的强度,但使钢的韧性降低。X100管线钢的最佳轧制工艺为终轧温度850℃,终冷温度200℃。