High pressure and water-bearing caverns ahead of a karst tunnel face tend to cause geological disasters, such as water and mud bursts. So, the determination of safe thickness of the reserved rock plug is a key technic...High pressure and water-bearing caverns ahead of a karst tunnel face tend to cause geological disasters, such as water and mud bursts. So, the determination of safe thickness of the reserved rock plug is a key technical problem to be solved for karst tunnel construction. Based on the Hoek-Brown nonlinear failure criterion, the minimum safe thickness of rock plug was investigated in the light of the limit analysis theory. On the basis of the proposed failure mode, the expression of the minimum thickness for rock plug was obtained by means of upper bound theorem in combination with variational principle. The calculation results show the influence of each parameter on safe thickness and reveal the damage range of rock plug. The proposed method is verified by comparing the results with those of the drain cavern of Maluqing Tunnel. The research shows that with the increase of compressive strength and tensile strength as well as constant A of Hoek-Brown criterion, the safe thickness decreases, whereas with the increase of cavern pressure, tunnel diameter, and constant B from Hoek-Brown criterion, the safe thickness increases. Besides, the tensile strength, or constants A and B affect the shear failure angle of rock plug structure, but other parameters do not. In conclusion, the proposed method can predict the minimum safe thickness of rock plug, and is useful for water burst study and prevention measures of tunnels constructed in high-risk karst regions.展开更多
The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness o...The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness of rock plug during the construction of tunnels. The limit analysis principle is employed to analyze the safe thickness from the point of energy dissipation, and the nonlinear and non-associated characteristics of geotechnical materials are both considered. On the basis of a plane failure pattern of rock plug, the expressions of detaching curve and rock plug thickness are derived. The effect of each parameter on the safe thickness of rock plug is discussed in detail, which interprets the corresponding failure scope of rock plug. The obtained results indicate that the thickness of rock plug is highly influenced by the nonlinear dilatancy coefficient and the nonlinear coefficient. The proposed method is validated by a comparison of the calculated results with those of the engineering project of the "526 karst cavern" of Yunwushan tunnel. This proposed method can provide reference basis for the design and excavation of karst tunnels in the future.展开更多
Solutions for radial flow of a Bingham fluid are analyzed in this paper.It aims to eliminate confusions in the literature concerning the plug flow region in different solutions for analysis and design of grouting in r...Solutions for radial flow of a Bingham fluid are analyzed in this paper.It aims to eliminate confusions in the literature concerning the plug flow region in different solutions for analysis and design of grouting in rock fractures.The analyses based on the force balance equation reveal that the plug flow region in Bingham radial flow is independent of the fracture radius,and is not a growth function adapted from the solution of one-dimensional(1D)slit flow according to‘similarity’.Based on the shear stress distribution,we analytically proposed that a non-uniform plug flow region cannot exist.The Bingham fluid(grout)penetration and flowrate evolution as functions of grouting time are given using the correct expression for the plug flow region.The radius-independent plug flow region and the presented flowrate evolution equation are also verified numerically.For radial flow,the relative penetration length is equal to the relative width of plug flow region,which is the same as that for 1D channel flow.Discrepancies in analytical solutions for grout penetration and flowrate evolution were also illustrated.The clarification of the plug flow region and evaluation of discrepancies in analytical solutions presented in this work could simplify modeling and design of grouting in rock engineering applications.展开更多
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the National Natural Science Foundation of ChinaProject(CX2014B069)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘High pressure and water-bearing caverns ahead of a karst tunnel face tend to cause geological disasters, such as water and mud bursts. So, the determination of safe thickness of the reserved rock plug is a key technical problem to be solved for karst tunnel construction. Based on the Hoek-Brown nonlinear failure criterion, the minimum safe thickness of rock plug was investigated in the light of the limit analysis theory. On the basis of the proposed failure mode, the expression of the minimum thickness for rock plug was obtained by means of upper bound theorem in combination with variational principle. The calculation results show the influence of each parameter on safe thickness and reveal the damage range of rock plug. The proposed method is verified by comparing the results with those of the drain cavern of Maluqing Tunnel. The research shows that with the increase of compressive strength and tensile strength as well as constant A of Hoek-Brown criterion, the safe thickness decreases, whereas with the increase of cavern pressure, tunnel diameter, and constant B from Hoek-Brown criterion, the safe thickness increases. Besides, the tensile strength, or constants A and B affect the shear failure angle of rock plug structure, but other parameters do not. In conclusion, the proposed method can predict the minimum safe thickness of rock plug, and is useful for water burst study and prevention measures of tunnels constructed in high-risk karst regions.
基金Project(2013CB036004) supported by the National Basic Research Program of ChinaProjects(51378510,51308072) supported by National Natural Science Foundation of ChinaProject(CX2014B069) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness of rock plug during the construction of tunnels. The limit analysis principle is employed to analyze the safe thickness from the point of energy dissipation, and the nonlinear and non-associated characteristics of geotechnical materials are both considered. On the basis of a plane failure pattern of rock plug, the expressions of detaching curve and rock plug thickness are derived. The effect of each parameter on the safe thickness of rock plug is discussed in detail, which interprets the corresponding failure scope of rock plug. The obtained results indicate that the thickness of rock plug is highly influenced by the nonlinear dilatancy coefficient and the nonlinear coefficient. The proposed method is validated by a comparison of the calculated results with those of the engineering project of the "526 karst cavern" of Yunwushan tunnel. This proposed method can provide reference basis for the design and excavation of karst tunnels in the future.
基金funding for this study is provided by the BeFo Rock Engineering Research Foundation(Grant No.392)。
文摘Solutions for radial flow of a Bingham fluid are analyzed in this paper.It aims to eliminate confusions in the literature concerning the plug flow region in different solutions for analysis and design of grouting in rock fractures.The analyses based on the force balance equation reveal that the plug flow region in Bingham radial flow is independent of the fracture radius,and is not a growth function adapted from the solution of one-dimensional(1D)slit flow according to‘similarity’.Based on the shear stress distribution,we analytically proposed that a non-uniform plug flow region cannot exist.The Bingham fluid(grout)penetration and flowrate evolution as functions of grouting time are given using the correct expression for the plug flow region.The radius-independent plug flow region and the presented flowrate evolution equation are also verified numerically.For radial flow,the relative penetration length is equal to the relative width of plug flow region,which is the same as that for 1D channel flow.Discrepancies in analytical solutions for grout penetration and flowrate evolution were also illustrated.The clarification of the plug flow region and evaluation of discrepancies in analytical solutions presented in this work could simplify modeling and design of grouting in rock engineering applications.