期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
受限波尔兹曼机 被引量:102
1
作者 张春霞 姬楠楠 王冠伟 《工程数学学报》 CSCD 北大核心 2015年第2期159-173,共15页
受限波尔兹曼机(restricted Boltzmann machines,RBM)是一类具有两层结构、对称连接且无自反馈的随机神经网络模型,层间全连接,层内无连接.近年来,随着RBM的快速学习算法一对比散度的出现,机器学习界掀起了研究RBM理论及应用的热潮.实... 受限波尔兹曼机(restricted Boltzmann machines,RBM)是一类具有两层结构、对称连接且无自反馈的随机神经网络模型,层间全连接,层内无连接.近年来,随着RBM的快速学习算法一对比散度的出现,机器学习界掀起了研究RBM理论及应用的热潮.实践表明,RBM是一种有效的特征提取方法,用于初始化前馈神经网络可明显提高泛化能力,堆叠多个RBM组成的深度信念网络能提取更抽象的特征.鉴于RBM的优点及其在深度学习中的广泛应用,本文对RBM的基本模型、学习算法、参数设置、评估方法、变形算法等进行了详细介绍,最后探讨了RBM在未来值得研究的方向. 展开更多
关键词 机器学习 深度学习 受限波尔兹曼机 对比散度 GIBBS采样
下载PDF
深度学习原理及应用综述 被引量:67
2
作者 付文博 孙涛 +2 位作者 梁藉 闫宝伟 范福新 《计算机科学》 CSCD 北大核心 2018年第B06期11-15,40,共6页
深度学习作为机器学习领域中重要的技术手段,有着广阔的应用前景。文中简述了深度学习的发展历程,介绍了卷积神经网络、受限玻尔兹曼机、自动编码器及其衍生的系列方法模型,以及Caffe,TensorFlow,Torch等6种主流深度框架;论述了深度学... 深度学习作为机器学习领域中重要的技术手段,有着广阔的应用前景。文中简述了深度学习的发展历程,介绍了卷积神经网络、受限玻尔兹曼机、自动编码器及其衍生的系列方法模型,以及Caffe,TensorFlow,Torch等6种主流深度框架;论述了深度学习在图像、语音、视频、文本、数据分析方面的应用情况,分析了深度学习现阶段存在的问题以及未来的发展趋势,为初学者提供了较全面的方法指导与文献索引支持。 展开更多
关键词 深度学习 神经网络 卷积神经网络 受限玻尔兹曼机 自动编码器 框架 应用
下载PDF
基于自编码网络特征降维的轻量级入侵检测模型 被引量:57
3
作者 高妮 高岭 +1 位作者 贺毅岳 王海 《电子学报》 EI CAS CSCD 北大核心 2017年第3期730-739,共10页
基于支持向量机(SVM)的入侵检测方法受时间和空间复杂度约束,在高维特征空间计算时面临"维数灾害"的问题.为此,本文提出一种基于自编码网络的支持向量机入侵检测模型(AN-SVM).首先,该模型采用多层无监督的限制玻尔兹曼机(RBM... 基于支持向量机(SVM)的入侵检测方法受时间和空间复杂度约束,在高维特征空间计算时面临"维数灾害"的问题.为此,本文提出一种基于自编码网络的支持向量机入侵检测模型(AN-SVM).首先,该模型采用多层无监督的限制玻尔兹曼机(RBM)将高维、非线性的原始数据映射至低维空间,建立高维空间和低维空间的双向映射自编码网络结构,进而运用基于反向传播网络的自编码网络权值微调算法重构低维空间数据的最优高维表示,从而获得原始数据的相应最优低维表示;最后,采用SVM分类算法对所学习到的最优低维表示进行入侵识别.实验结果表明,AN-SVM模型降低了入侵检测模型中分类的训练时间和测试时间,并且分类效果优于传统算法,是一种可行且高效的轻量级入侵检测模型. 展开更多
关键词 特征降维 自编码网络 限制玻尔兹曼机 支持向量机 入侵检测
下载PDF
结合受限玻尔兹曼机的递归神经网络电力系统短期负荷预测 被引量:41
4
作者 李若晨 朱帆 +1 位作者 朱永利 翟羽佳 《电力系统保护与控制》 EI CSCD 北大核心 2018年第17期83-88,共6页
短期负荷预测的重要性随着电力企业的发展不断提高。传统的负荷预测虽然已经发展相对成熟,但现阶段对负荷预测的准确性要求逐渐提高。为满足发展需要,则要对现有的方法进行改进或建立新的预测方法。通过分析负荷预测数据周期性及周期内... 短期负荷预测的重要性随着电力企业的发展不断提高。传统的负荷预测虽然已经发展相对成熟,但现阶段对负荷预测的准确性要求逐渐提高。为满足发展需要,则要对现有的方法进行改进或建立新的预测方法。通过分析负荷预测数据周期性及周期内的特征,结合递归神经网络在分析时间序列数据的独特优势和受限玻尔兹曼机的强大的无监督学习能力,对结合受限玻尔兹曼机的递归神经网络的工作原理及训练过程进行了阐述。利用该网络进行了电力负荷数据预测实验验证并与其他神经网络进行了比较性实验。结果表明,所提出的神经网络较其他网络在电力短期负荷预测实验中有更高的准确性。 展开更多
关键词 负荷预测 递归神经网络 受限玻尔兹曼机 时间序列
下载PDF
利用社交关系的实值条件受限玻尔兹曼机协同过滤推荐算法 被引量:40
5
作者 何洁月 马贝 《计算机学报》 EI CSCD 北大核心 2016年第1期183-195,共13页
利用受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)解决推荐问题已成为一个很有意义的研究方向.目前用于推荐的RBM模型中使用的仅仅是用户评分数据,但用户评分数据存在着严重的数据稀疏性问题.随着互联网对人们生活的不断渗透,社... 利用受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)解决推荐问题已成为一个很有意义的研究方向.目前用于推荐的RBM模型中使用的仅仅是用户评分数据,但用户评分数据存在着严重的数据稀疏性问题.随着互联网对人们生活的不断渗透,社交网络已经成为人们生活中不可缺少的一部分,利用社交网络中的好友信任关系,有助于缓解评分数据的稀疏性问题,提高推荐系统的性能.因此,该文首先提出基于实值的状态玻尔兹曼机(Real-Valued Conditional Restricted Boltzmann Machine,R_CRBM)模型,此模型不需要将评分数据转化为一个K维的0-1向量,并且R_CRBM模型在训练过程中使用了训练数据中潜在的评分/未评分信息;同时该文将最近信任好友关系应用到R_CRBM模型推荐过程中.在百度数据集和Epinions数据集上的实验结果表明R_CRBM模型和引入的最近信任好友关系均有助于提高推荐系统的预测精度;最后,针对大数据环境下,普通平台很难完成R_CRBM模型训练的问题,该文提出基于Spark的并行化方案,较好地解决了该问题. 展开更多
关键词 受限玻尔兹曼机 数据稀疏性 R_CRBM 社交网络 信任关系 大数据
下载PDF
基于深度学习的电力大数据融合与异常检测方法 被引量:37
6
作者 刘冬兰 马雷 +2 位作者 刘新 李冬 常英贤 《计算机应用与软件》 北大核心 2018年第4期61-64,136,共5页
为了充分利用电力大数据中的异构数据源挖掘出电网中存在的安全威胁,采用深度受限玻尔兹曼机将不同格式的异构数据映射到统一的嵌入式向量空间,实现了异构数据的融合。采用循环神经网络对得到的嵌入式向量数据建立画像,实现了数据中异... 为了充分利用电力大数据中的异构数据源挖掘出电网中存在的安全威胁,采用深度受限玻尔兹曼机将不同格式的异构数据映射到统一的嵌入式向量空间,实现了异构数据的融合。采用循环神经网络对得到的嵌入式向量数据建立画像,实现了数据中异常事件的检测。实验结果表明,提出的异常检测方法在提出的互信息量度量指标中具有很高的互信息量。此外提出的方法在准确率、误报率和漏报率中的结果也优于其他异常检测方法。 展开更多
关键词 电力大数据 受限玻尔兹曼机 循环神经网络 异常检测 深度学习 数据融合
下载PDF
基于深度信念网络的信号重构与轴承故障识别 被引量:35
7
作者 单外平 曾雪琼 《电子设计工程》 2016年第4期67-71,共5页
针对传统智能识别需要复杂的特征提取过程,增加了操作的难度和不确定性,采用深度信念网络(Deep Belief Network,DBN)直接从原始数据对故障智能识别的方法。该方法避免了人工特征提取过程,增强了识别的智能性。将以原始数据为输入的DBN... 针对传统智能识别需要复杂的特征提取过程,增加了操作的难度和不确定性,采用深度信念网络(Deep Belief Network,DBN)直接从原始数据对故障智能识别的方法。该方法避免了人工特征提取过程,增强了识别的智能性。将以原始数据为输入的DBN应用于轴承故障识别,接近100%正确识别率的实验结果表明:DBN可以直接通过原始数据对轴承故障进行高效识别。 展开更多
关键词 特征提取 受限玻尔兹曼机 DBN 深度学习 故障识别
下载PDF
基于深度限制波尔兹曼机的辐射源信号识别 被引量:31
8
作者 周东青 王玉冰 +2 位作者 王星 程相东 肖吉阳 《国防科技大学学报》 EI CAS CSCD 北大核心 2016年第6期136-141,共6页
针对电子侦察中使用常规参数难以有效识别复杂体制雷达信号的问题,提出利用深度限制波尔兹曼机对辐射源识别的模型。模型由多个限制波尔兹曼机组成,通过逐层自底向上无监督学习获得初始参数,并用后向传播算法对整个模型进行有监督的参... 针对电子侦察中使用常规参数难以有效识别复杂体制雷达信号的问题,提出利用深度限制波尔兹曼机对辐射源识别的模型。模型由多个限制波尔兹曼机组成,通过逐层自底向上无监督学习获得初始参数,并用后向传播算法对整个模型进行有监督的参数微调,利用Softmax进行分类识别。通过仿真实验表明该模型能对辐射源进行有效的特征提取和分类识别,具有较高的识别精度和较强的鲁棒性。 展开更多
关键词 辐射源信号识别 深度学习 限制波尔兹曼机
下载PDF
基于深度信念网络的PM_(2.5)预测 被引量:30
9
作者 郑毅 朱成璋 《山东大学学报(工学版)》 CAS 北大核心 2014年第6期19-25,共7页
提出一种基于深度信念网络(deep belief networks,DBNs)的区域PM2.5日均值预测方法,讨论了训练数据选择方式,并优化了DBNs参数设置。通过相关实验并与基于径向基神经网络(radial basis function,RBF)和反向传播神经网络(back propagatio... 提出一种基于深度信念网络(deep belief networks,DBNs)的区域PM2.5日均值预测方法,讨论了训练数据选择方式,并优化了DBNs参数设置。通过相关实验并与基于径向基神经网络(radial basis function,RBF)和反向传播神经网络(back propagation,BP)方法比较,验证了基于DBNs方法的可行性和预测精度。实验结果表明:基于DBNs的方法,区域(西安市)预测PM2.5日均值与观测日均值之间均方差(mean square error,MSE)为8.47×10-4mg2/m6;而采用相同数据集,基于RBF和BP的方法均方差为1.30×10-3mg2/m6和1.96×10-3mg2/m6。比较分析表明:基于DBNs的方法能较好预测区域整体PM2.5的日均值变化趋势,显著优于基于神经网络和径向基网络方法的预测结果。 展开更多
关键词 PM2. 5预测 深度信念网络 深度学习 机器学习 限制玻尔兹曼机
原文传递
基于情境感知的高校移动图书馆知识资源推荐研究 被引量:30
10
作者 张潇璐 赵学敏 刘璇 《情报科学》 CSSCI 北大核心 2020年第1期48-52,92,共6页
【目的/意义】基于情境感知的个性化推荐技术引起了广泛关注,成为新的研究热点,本文针对高校移动图书馆提出一种基于情境感知的知识资源推荐模型.【方法/过程】融入情境因素,通过基于改进受限玻尔兹曼机的协同过滤算法来实现读者所处移... 【目的/意义】基于情境感知的个性化推荐技术引起了广泛关注,成为新的研究热点,本文针对高校移动图书馆提出一种基于情境感知的知识资源推荐模型.【方法/过程】融入情境因素,通过基于改进受限玻尔兹曼机的协同过滤算法来实现读者所处移动情境下的知识资源推荐。并通过真实数据集进行实验验证。【结果/结论】提出的基于情境感知的知识资源推荐模型和算法,具有较高的准确度和效率,能够有效解决移动环境下高校读者个性化知识资源推荐问题' 展开更多
关键词 个性化推荐 情境感知 受限玻尔兹曼机 知识资源
原文传递
基于卷积神经网络的fMRI数据分类方法 被引量:24
11
作者 张兆晨 冀俊忠 《模式识别与人工智能》 EI CSCD 北大核心 2017年第6期549-558,共10页
功能性磁共振成像(fMRI)数据分类方法无法有效提取fMRI数据的局部特征,影响分类准确性.因此文中提出基于卷积神经网络的fMRI数据分类方法.首先设计卷积神经网络结构,并根据卷积神经网络的卷积核尺寸构建受限玻尔兹曼机模型.然后使用fMR... 功能性磁共振成像(fMRI)数据分类方法无法有效提取fMRI数据的局部特征,影响分类准确性.因此文中提出基于卷积神经网络的fMRI数据分类方法.首先设计卷积神经网络结构,并根据卷积神经网络的卷积核尺寸构建受限玻尔兹曼机模型.然后使用fMRI数据感兴趣区域体素构造数据,对受限玻尔兹曼机进行预训练,并将训练得到的权重矩阵进行相对变换,用于初始化卷积神经网络的卷积核参数.最后训练初始化好的整个模型,得到最终的分类模型.在Haxby和LPD数据集上的实验表明,文中方法可以有效提升fMRI数据的分类准确率. 展开更多
关键词 功能性磁共振成像(fMRI)数据分类 卷积神经网络 受限玻尔兹曼机
下载PDF
基于深度信念网络的高压断路器故障识别算法 被引量:23
12
作者 朱萌 梅飞 +3 位作者 郑建勇 沙浩源 戴永正 顾宇锋 《电测与仪表》 北大核心 2019年第2期10-15,46,共7页
针对高压断路器故障现有故障诊断算法中,特征提取不准确导致分类正确率较低的问题,提出了基于深度信念网络的高压断路器故障识别方法。深度信念网络(Deep Belief Network,DBN)是非监督的深度神经网络,由多个受限玻尔兹曼机(Restricted B... 针对高压断路器故障现有故障诊断算法中,特征提取不准确导致分类正确率较低的问题,提出了基于深度信念网络的高压断路器故障识别方法。深度信念网络(Deep Belief Network,DBN)是非监督的深度神经网络,由多个受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)叠加起来组成。首先使用无标签的数据样本自下而上的对各RBM层逐层训练,得到各层最优参数;再以此为初始参数将DBN展开成反向传播的结构,使用带标签的数据样本进行全局的参数微调;最后得到DBN分类网络。这一过程中,有效避免了特征提取的人工操作,解决了网络训练的局部最优问题,使断路器故障诊断更加智能化。通过试验结果可知,该方法可准确、可靠地用于诊断断路器主要机械故障。 展开更多
关键词 断路器 故障诊断 深度信念网络 DBN 受限玻尔兹曼机
下载PDF
基于RBM和SVM的风电机组叶片开裂故障预测 被引量:22
13
作者 张鑫 徐遵义 +1 位作者 何慧茹 王飞 《电力系统保护与控制》 EI CSCD 北大核心 2020年第15期134-140,共7页
针对风电机组SCADA监测数据的非线性、高冗余等特点,提出一种基于受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)和支持向量机(Support VectorMachine,SVM)的风电机组叶片开裂故障预测方法。利用RBM优异的特征学习能力,将其作为特... 针对风电机组SCADA监测数据的非线性、高冗余等特点,提出一种基于受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)和支持向量机(Support VectorMachine,SVM)的风电机组叶片开裂故障预测方法。利用RBM优异的特征学习能力,将其作为特征提取器来获得风电机组SCADA数据中表达能力更强的数据特征。将RBM的输出作为SVM的输入,构建RBM+SVM组合预测模型。利用训练集、验证集进行预测模型构建和参数微调。为验证提出模型的有效性,将其预测结果与RBM+Logistic回归、SVM和Logistic回归的预测结果进行对比。实验表明,RBM+SVM的预测准确率为93.08%,与三组对比模型相比具有明显的优势。研究结果可为实际风电机组叶片开裂故障预测提供重要参考。 展开更多
关键词 风电机组 叶片开裂故障 SCADA数据 受限玻尔兹曼机 支持向量机
下载PDF
一种基于受限玻尔兹曼机的说话人特征提取算法 被引量:19
14
作者 酆勇 熊庆宇 +1 位作者 石为人 曹俊华 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第2期256-262,共7页
基于总体空间差异模型的身份认证矢量(即i-vector)已经在说话人识别任务中得到了广泛应用。本文提出了一种基于受限玻尔兹曼机(RBM)的说话人特征向量提取方法来替代总体差异建模的特征提取方法。该方法通过训练得到RBM的模型参数,之后... 基于总体空间差异模型的身份认证矢量(即i-vector)已经在说话人识别任务中得到了广泛应用。本文提出了一种基于受限玻尔兹曼机(RBM)的说话人特征向量提取方法来替代总体差异建模的特征提取方法。该方法通过训练得到RBM的模型参数,之后利用隐层输出来表征输入语音超向量的说话人信息。文中比较了不同结构和模块(包括构建RBM的2种单元分布、线性判别分析等)对说话人确认性能的影响。所提方法作为一种新的i-vector特征表示方法,在NIST SRE 2008上取得了和ivector说话人基线系统相当的性能。通过与i-vector基线系统进行融合,系统性能进一步提升。在NIST SRE 2008女性电话语音测试集和男性电话语音测试集上的等错误率分别降至6.83%和4.73%。 展开更多
关键词 说话人确认 身份认证矢量 深度学习 受限玻尔兹曼机 线性判别分析
下载PDF
EEG情感识别中基于集成深度学习模型的多分析域特征融合 被引量:17
15
作者 晁浩 刘永利 连卫芳 《控制与决策》 EI CSCD 北大核心 2020年第7期1674-1680,共7页
提出一种基于集成深度学习模型的情感状态检测方法.首先从脑电信号的时域、频域和时频域中提取4种表征情绪状态显著信息的初始特征;然后使用胶质细胞链改进的深度信念网络分别提取这些特征的高层抽象表示;最后利用判别式受限玻尔兹曼机... 提出一种基于集成深度学习模型的情感状态检测方法.首先从脑电信号的时域、频域和时频域中提取4种表征情绪状态显著信息的初始特征;然后使用胶质细胞链改进的深度信念网络分别提取这些特征的高层抽象表示;最后利用判别式受限玻尔兹曼机对高层抽象特征进行融合,进行情感状态预测.在DEAP数据集上进行的实验显示,胶质链能够挖掘和利用EEG不同通道之间的相关性信息,而集成深度学习模型能够有效集成EEG信号在时域、频域和时频域蕴含的情感状态相关的显著性信息. 展开更多
关键词 情感识别 多通道脑电 深度学习 深度信念网络 特征融合 受限玻尔兹曼机
原文传递
基于DAE-BP神经网络的股票预测研究 被引量:17
16
作者 邓烜堃 万良 黄娜娜 《计算机工程与应用》 CSCD 北大核心 2019年第3期126-132,共7页
股票指标数据种类多、维度高,且指标之间存在多重共线性。为了降低数据的维度、消除指标间的多重共线性和预测股票价格,首先构建了基于受限布尔兹曼机的深度自编码器,实现了高维数据向低维空间的压缩编码。然后基于BP神经网络建立了低... 股票指标数据种类多、维度高,且指标之间存在多重共线性。为了降低数据的维度、消除指标间的多重共线性和预测股票价格,首先构建了基于受限布尔兹曼机的深度自编码器,实现了高维数据向低维空间的压缩编码。然后基于BP神经网络建立了低维编码序列与股票价格之间的回归模型。实验结果表明,深度自编码器提取特征的能力优于主成分分析法和因子分析法;相比较使用降维前的数据,使用编码后的数据用预测股票价格,模型可以减少计算开销,并且获得更高的预测精度。 展开更多
关键词 深度自编码器 受限布尔兹曼机 BP神经网络 股票预测
下载PDF
受限玻尔兹曼机研究综述 被引量:17
17
作者 张健 丁世飞 +3 位作者 张楠 杜鹏 杜威 于文家 《软件学报》 EI CSCD 北大核心 2019年第7期2073-2090,共18页
概率图模型是目前机器学习研究的热点,基于概率图模型构造的生成模型已广泛应用于图像和语音处理等领域。受限玻尔兹曼机(restricted Boltzmann machines,简称RBMs)是一种概率无向图,在建模数据分布方面有重要的研究价值,RBMs既可以结... 概率图模型是目前机器学习研究的热点,基于概率图模型构造的生成模型已广泛应用于图像和语音处理等领域。受限玻尔兹曼机(restricted Boltzmann machines,简称RBMs)是一种概率无向图,在建模数据分布方面有重要的研究价值,RBMs既可以结合卷积算子构造深度判别模型,为深度网络提供统计力学的理论支持,也可以结合有向图构建生成模型,提供具有多峰分布的先验信息。主要综述了以RBMs为基础的概率图模型的相关研究。首先介绍了基于RBMs的机器学习模型的基本概念和训练算法,并讨论了基于极大似然估计的各训练算法的联系,比较了各算法的log似然损失;其次,综述了RBMs模型最新的研究进展,包括在目标函数中引入对抗损失和W距离,并构造基于RBMs先验的变分自编码模型(variational autoencoders,简称VAEs)、基于对抗损失的RBMs模型,并讨论了各实值RBMs模型之间的联系和区别;最后,综述了以RBMs为基础的模型在深度学习中的应用,并讨论了神经网络和RBMs模型在研究中存在的问题及未来的研究方向。 展开更多
关键词 受限制的玻尔兹曼机 神经网络 概率图模型 深度学习
下载PDF
基于深度学习与随机森林的高维数据特征选择 被引量:16
18
作者 冯晓荣 瞿国庆 《计算机工程与设计》 北大核心 2019年第9期2494-2501,共8页
针对特征选择算法对高维大数据降维效果与稳定性差的缺点,提出一种基于深度学习与随机森林的大数据特征选择算法。设计基于随机森林的特征消除算法,对高维大数据集进行特征降维处理;采用保留的特征对受限玻尔兹曼机进行训练,确定受限玻... 针对特征选择算法对高维大数据降维效果与稳定性差的缺点,提出一种基于深度学习与随机森林的大数据特征选择算法。设计基于随机森林的特征消除算法,对高维大数据集进行特征降维处理;采用保留的特征对受限玻尔兹曼机进行训练,确定受限玻尔兹曼机的模型结构与权重;使用训练受限玻尔兹曼机的学习参数初始化一个多层神经网络,通过标准的后向传播方法训练多层神经网络。基于多组数据集的实验结果表明,该算法提高了高维数据集特征选择的化简效果,保持了较高的稳定性与鲁棒性。 展开更多
关键词 特征选择 大数据 高维数据 深度学习 随机森林 受限玻尔兹曼机
下载PDF
基于改进深度信念网络的短期电力负荷预测方法 被引量:15
19
作者 王剑锋 郑剑 +1 位作者 王旭东 于建成 《电力系统及其自动化学报》 CSCD 北大核心 2021年第10期125-130,共6页
随着社会经济结构的变化,仅依赖于负荷历史数据和少量气象等影响因素进行电力负荷预测会造成较大误差。本文提出了一种基于改进深度信念网络IDBN(improved deep belief network)算法的负荷预测方法。该方法充分挖掘历史负荷数据中的规律... 随着社会经济结构的变化,仅依赖于负荷历史数据和少量气象等影响因素进行电力负荷预测会造成较大误差。本文提出了一种基于改进深度信念网络IDBN(improved deep belief network)算法的负荷预测方法。该方法充分挖掘历史负荷数据中的规律性,将数据特征向量输入到多个用于两层稀疏自编码神经网络中进行特征融合,利用神经网络模型进行负荷预测,并进行无监督训练对模型进行预训练,提升多类型实值输入数据的处理效率。最后,通过算例验证了本文所提方法的有效性。 展开更多
关键词 电力系统 负荷预测 受限玻尔兹曼机 深度信念网络
下载PDF
一种基于RBM-SVM算法的无线传感网络入侵检测算法 被引量:13
20
作者 程超 武静凯 陈梅 《计算机应用与软件》 北大核心 2022年第5期325-329,共5页
针对以通信节点为基础的无线传感器网络作为物联网基础设施开始临越来越多的信息安全威胁,提出一种基于RBM特征提取和多层SVM检测的无线传感网络入侵检测方法,将收集到的高维网络数据进行特征信息提取并结合网络拓扑结构及攻击流量相似... 针对以通信节点为基础的无线传感器网络作为物联网基础设施开始临越来越多的信息安全威胁,提出一种基于RBM特征提取和多层SVM检测的无线传感网络入侵检测方法,将收集到的高维网络数据进行特征信息提取并结合网络拓扑结构及攻击流量相似性分层检测入侵行为。实验仿真采用NSL_KDD公共入侵检测数据集,实验结果表明该模型对网络流量检测准确率为99.06%。 展开更多
关键词 无线传感网络 入侵检测 特征提取 受限玻尔兹曼机 支持向量机
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部