We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the proce...We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξ n ) on ?+, and reproduce independently new particles according to a probability law p(ξ n ) on ?. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean E ξ Z(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.展开更多
We study the scaling limit for a catalytic branching particle system whose particles perform random walks on Z and can branch at 0 only. Varying the initial (finite) number of particles, we get for this system diffe...We study the scaling limit for a catalytic branching particle system whose particles perform random walks on Z and can branch at 0 only. Varying the initial (finite) number of particles, we get for this system different limiting distributions. To be more specific, suppose that initially there are n^β particles and consider the scaled process Zt^n(·) = Znt(√n·), where Zt is the measure-valued process 1 and to a representing the original particle system. We prove that Ztn converges to 0 when β 〈1/4 and to a nondegenerate discrete distribution when β=1/4.In addition,if 1/4〈β〈1/2 then n-^(2β-1/2)Zt^n converges to a random limit,while if β 〉21then n^-βZtn converges to a deterministic limit.展开更多
基金the National Natural Sciente Foundation of China (Grant Nos. 10771021, 10471012)Scientific Research Foundation for Returned Scholars, Ministry of Education of China (Grant No. [2005]564)
文摘We consider an age-dependent branching process in random environments. The environments are represented by a stationary and ergodic sequence ξ = (ξ 0, ξ 1,…) of random variables. Given an environment ξ, the process is a non-homogenous Galton-Watson process, whose particles in n-th generation have a life length distribution G(ξ n ) on ?+, and reproduce independently new particles according to a probability law p(ξ n ) on ?. Let Z(t) be the number of particles alive at time t. We first find a characterization of the conditional probability generating function of Z(t) (given the environment ξ) via a functional equation, and obtain a criterion for almost certain extinction of the process by comparing it with an embedded Galton-Watson process. We then get expressions of the conditional mean E ξ Z(t) and the global mean EZ(t), and show their exponential growth rates by studying a renewal equation in random environments.
基金DFGgrants RFBR 02-01-00266+2 种基金Russian Scientific School 1758.2003.1NSAAlexander von Humboldt Foundation
文摘We study the scaling limit for a catalytic branching particle system whose particles perform random walks on Z and can branch at 0 only. Varying the initial (finite) number of particles, we get for this system different limiting distributions. To be more specific, suppose that initially there are n^β particles and consider the scaled process Zt^n(·) = Znt(√n·), where Zt is the measure-valued process 1 and to a representing the original particle system. We prove that Ztn converges to 0 when β 〈1/4 and to a nondegenerate discrete distribution when β=1/4.In addition,if 1/4〈β〈1/2 then n-^(2β-1/2)Zt^n converges to a random limit,while if β 〉21then n^-βZtn converges to a deterministic limit.