In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical syst...In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.展开更多
为系统研究无巷旁充填切顶卸压沿空留巷矿压规律及关键支护技术,理论分析了无巷旁充填切顶卸压沿空留巷矿压显现规律,基于恒源煤矿Ⅱ632机巷工程实践,在巷道内布设位移观测点和顶板恒阻锚索测力计对巷道变形及恒阻锚索工作阻力进行连续...为系统研究无巷旁充填切顶卸压沿空留巷矿压规律及关键支护技术,理论分析了无巷旁充填切顶卸压沿空留巷矿压显现规律,基于恒源煤矿Ⅱ632机巷工程实践,在巷道内布设位移观测点和顶板恒阻锚索测力计对巷道变形及恒阻锚索工作阻力进行连续观测,得到巷道在留巷期间巷道变形量、变形速率及恒阻锚索受力的变化规律。结果表明:切顶之后,由于顶板快速下沉所产生的冲击载荷,留巷围岩变形剧烈,尤其是强烈的底鼓现象;留巷段围岩变形受动压影响,变形更加剧烈;无巷旁充填切顶卸压沿空留巷顶部恒阻锚索总体平均受力为259.721 k N,最大受力达到275.76 k N,当工作面推过测点后,恒阻锚索受力趋于稳定;提出了"强化恒阻锚索配合锚杆(索)支护以增加顶板支护强度"、"当底板较软时,适当强化底板支护"和"注意留巷阶段的加强支护"的无巷旁充填切顶卸压沿空留巷关键支护技术。展开更多
基金Supported by the Project DPI2013-44860 funded by the Spanish Ministry of Science and Technology
文摘In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.
文摘为系统研究无巷旁充填切顶卸压沿空留巷矿压规律及关键支护技术,理论分析了无巷旁充填切顶卸压沿空留巷矿压显现规律,基于恒源煤矿Ⅱ632机巷工程实践,在巷道内布设位移观测点和顶板恒阻锚索测力计对巷道变形及恒阻锚索工作阻力进行连续观测,得到巷道在留巷期间巷道变形量、变形速率及恒阻锚索受力的变化规律。结果表明:切顶之后,由于顶板快速下沉所产生的冲击载荷,留巷围岩变形剧烈,尤其是强烈的底鼓现象;留巷段围岩变形受动压影响,变形更加剧烈;无巷旁充填切顶卸压沿空留巷顶部恒阻锚索总体平均受力为259.721 k N,最大受力达到275.76 k N,当工作面推过测点后,恒阻锚索受力趋于稳定;提出了"强化恒阻锚索配合锚杆(索)支护以增加顶板支护强度"、"当底板较软时,适当强化底板支护"和"注意留巷阶段的加强支护"的无巷旁充填切顶卸压沿空留巷关键支护技术。