This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles(HAUAVs) cruising at low speed.Numerical simulation on the flows around several represent...This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles(HAUAVs) cruising at low speed.Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow.The water tunnel model tests further validate the accuracy and effectiveness of the numerical method.Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses(12%, 14%, 16%, 18%), as well as different locations of the maximum relative thickness(x/c = 22%, 26%, 30%, 34%), at a low Reynolds number of 5 × 10^5.Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble.On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance.The numerical method is feasible for the simulation of low Reynolds number flow.The study can help to provide a basis for the design of low Reynolds number airfoil.展开更多
This work was aimed to study the relative floatability of phosphate flotation by means of kinetic analysis.The relative floatability is important to determine how selectively the phosphate is separated from its impuri...This work was aimed to study the relative floatability of phosphate flotation by means of kinetic analysis.The relative floatability is important to determine how selectively the phosphate is separated from its impurities. The effects of pulp pH, solid content, reagents dosage(depressant, collector and co-collector) and conditioning time were investigated on the ratio of the modified rate constant of phosphate to the modified rate constant of iron(relative floatability). The results showed that a large dosage of depressant associated with a low value of collector resulted in a better relative floatability. Increasing the co-collector dosage, conditioning time and pH increased the relative floatability up to a certain value and thereafter resulted in diminishing the relative floatability. Meanwhile, the results indicated that increment of solid concentration increased the relative floatability in range investigated. It was also found that that maximum relative floatability(16.05) could be obtained in pulp pH, 9.32, solid percentage, 30,depressant dosage, 440 g/t, collector dosage, 560 g/t, co-collector dosage, 84.63 g/t and conditioning time,9.43 min.展开更多
The computational fluid dynamics method was used to simulate the flow field around a wind turbine at the yaw angles of 0°,15°,30°,and 45°.The angle of attack and the relative velocity of the spanwi...The computational fluid dynamics method was used to simulate the flow field around a wind turbine at the yaw angles of 0°,15°,30°,and 45°.The angle of attack and the relative velocity of the spanwise sections of the blade were extracted with the reference points method.By analyzing the pressure distribution and the flow characteristics of the blade surface,the flow mechanism of the blade surface in the yawed condition was discussed.The results showed that the variations of the angle of attack and the relative velocity were related to the azimuth angle and the radius in the yawed condition.The larger the yaw angle was,the larger the variation was.The pressure distribution in the spanwise sections was affected by both the angle of attack and the relative velocity.The angle of attack was more influential than the relative velocity.At the same yaw angle,when the angle of attack decreased,the c_(p)∼x/c curve shrunk inward and the lift force decreased.The larger the yaw angle was,the more obvious the shrink was.The effect of the yaw on the blade root region was higher than its effect on the blade tip region.展开更多
文摘This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles(HAUAVs) cruising at low speed.Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow.The water tunnel model tests further validate the accuracy and effectiveness of the numerical method.Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses(12%, 14%, 16%, 18%), as well as different locations of the maximum relative thickness(x/c = 22%, 26%, 30%, 34%), at a low Reynolds number of 5 × 10^5.Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble.On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance.The numerical method is feasible for the simulation of low Reynolds number flow.The study can help to provide a basis for the design of low Reynolds number airfoil.
基金the phosphate Esfordi MineShahrood University of Technology for their support during this research
文摘This work was aimed to study the relative floatability of phosphate flotation by means of kinetic analysis.The relative floatability is important to determine how selectively the phosphate is separated from its impurities. The effects of pulp pH, solid content, reagents dosage(depressant, collector and co-collector) and conditioning time were investigated on the ratio of the modified rate constant of phosphate to the modified rate constant of iron(relative floatability). The results showed that a large dosage of depressant associated with a low value of collector resulted in a better relative floatability. Increasing the co-collector dosage, conditioning time and pH increased the relative floatability up to a certain value and thereafter resulted in diminishing the relative floatability. Meanwhile, the results indicated that increment of solid concentration increased the relative floatability in range investigated. It was also found that that maximum relative floatability(16.05) could be obtained in pulp pH, 9.32, solid percentage, 30,depressant dosage, 440 g/t, collector dosage, 560 g/t, co-collector dosage, 84.63 g/t and conditioning time,9.43 min.
文摘The computational fluid dynamics method was used to simulate the flow field around a wind turbine at the yaw angles of 0°,15°,30°,and 45°.The angle of attack and the relative velocity of the spanwise sections of the blade were extracted with the reference points method.By analyzing the pressure distribution and the flow characteristics of the blade surface,the flow mechanism of the blade surface in the yawed condition was discussed.The results showed that the variations of the angle of attack and the relative velocity were related to the azimuth angle and the radius in the yawed condition.The larger the yaw angle was,the larger the variation was.The pressure distribution in the spanwise sections was affected by both the angle of attack and the relative velocity.The angle of attack was more influential than the relative velocity.At the same yaw angle,when the angle of attack decreased,the c_(p)∼x/c curve shrunk inward and the lift force decreased.The larger the yaw angle was,the more obvious the shrink was.The effect of the yaw on the blade root region was higher than its effect on the blade tip region.