The prevalent presence of fluoroquinolone antibiotics in aquatic environments has attracted considerable attention because of their harmful effects on humans and the ecological environment.Magnesium hydroxide nanocrys...The prevalent presence of fluoroquinolone antibiotics in aquatic environments has attracted considerable attention because of their harmful effects on humans and the ecological environment.Magnesium hydroxide nanocrystals were found to act as a simple and effective adsorbent to remove low-concentration ciprofloxacin(CIP)in aqueous solution.The as-prepared Mg(OH)2 nanocrystals exhibited excellent CIP adsorption performance and high selectivity toward CIP molecules compared with other antibiotics or aromatics,e.g.,norfloxacin(NOR)and eosin B(EB).The adsorbent showed pH-dependent adsorption,indicating that the adsorption process is probably dominated by an electrostatic interaction mechanism.In addition,structural analysis of the adsorbent indicated that coordination and hydrogen bonding between CIP and Mg(OH)2 nanocrystal might also be involved in the adsorption process.Moreover,the adsorbent could be easily recovered by pyrolysis and hydration without significant reduction of adsorption capacity.The superior adsorption behavior of Mg(OH)2 nanocrystal indicates that it may serve as a potential adsorbent material candidate for the selective removal of CIP from aquatic environments.展开更多
The waste gas evolved from biodegradation of animal urine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In...The waste gas evolved from biodegradation of animal urine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In the process, activated carbon impregnated with H2SO4(H2SO4/C) is employed. Ammonia in the waste gas reacts with H2SO4 on the adsorbent instantaneously and completely to form (NIL)2SO4. The H2SO4/C adsorbent is high in NH3 adsorption capacity and regenerable. The NH3 removal capacity of this regenerable adsorbent is more than 30 times that of the adsorbents used normally in the industry. The spent H2SO4/C is regenerated by flowing low-pressure steam through the adsorbent bed to remove the (NH4)2SO4 from the adsorbent. The regeneration by-product is concentrated (NH4)2SO4 solution, which is a perfect liquid fertilizer for local use. Re-soaking the activated carbon with H2SO4 solution rejuvenates the activity of the adsorbent. Thus the H2SOJC can be reused repeatedly. In the mechanism of this reactive adsorption process, trace of H20 in the waste gas is a required, which lends itself to treating ammonia gas saturated with moisture from biodegradation of animal urine.展开更多
The flow injection analysis was firstly used for studying a solid-liquid adsorption system, and the dynamics process in the adsorption of dyestuff with regenerable chitin was traced by an online method of flow injecti...The flow injection analysis was firstly used for studying a solid-liquid adsorption system, and the dynamics process in the adsorption of dyestuff with regenerable chitin was traced by an online method of flow injection-spectrophotometry. Experimental results indicate that there is a linearization between the tested signals and the height of peaks with reciprocity coefficient 0.9999 by using the flow injection-spectrophotometry system to study the dynamics adsorption process in solidliquid system. The method shows a good stability and reproducibility. It provides a new method for the studies on adsorption dynamics in solid- liquid system.展开更多
Covalent/metal organic frameworks are highly attractive due to their tunable structure and properties,and broad applications in multiple fields.However,they still suffer from numbers of drawbacks including low solubil...Covalent/metal organic frameworks are highly attractive due to their tunable structure and properties,and broad applications in multiple fields.However,they still suffer from numbers of drawbacks including low solubility,harsh synthesis and fabrication,and low mechanical flexibility.Herein,we report a new organic framework consisting of macrocycles and organic frames in its periodic structure,and denote it as macrocycle organic polymer(MOP).The size-tunable macrocycles containing peripheral furan units are synthesized by anionic ring-opening polymerization,which undergo a reversible Diels-Alde reaction with bismaleimide to generate/degrade MOPs at given temperatures.Relying on above features,MOPs exhibit excellent flexibility,healable ability and recycle ability.Interestingly,owing to the“living”nature of anionic ring-opening polymerization,MOPs can self-grow into bigger sizes in the presence of monomer and catalysis,analogs to the living creatures.Moreover,their high porosity and rich thioether structure enable them as good metal ion absorbers and promising applications in wearable electronics.展开更多
In this work,magnesium silicate-based sulfonated polystyrene sphere composites(SPS/MgSi)were synthesized by one-step(SMD1)and two-step(SMD2)methods.For SMD1,MgSi particles were densely assembled on the surface of SPS,...In this work,magnesium silicate-based sulfonated polystyrene sphere composites(SPS/MgSi)were synthesized by one-step(SMD1)and two-step(SMD2)methods.For SMD1,MgSi particles were densely assembled on the surface of SPS,assisted by complexation between Fe^3+and hydroxyl phenol.For SMD2,SPS/SiO2 was firstly obtained by the same method as SMD1,and then SPS/SiO2 was transformed directly to SPS/MgSi under hydrothermal conditions.Therefore,MgSi obtained by the two-step method had an interwoven structure.Compared to SPS,MgSi and SMD1,SMD2 presented a larger specific surface area and more negative surface charges.Therefore,SMD2 showed superior adsorption performance toward CIP with concentrations of 5,10 and 50 mg/L,and for 50 mg/L,the equilibrium adsorption capacity could reach 329.7 mg/g.The adsorption process is fast and can be described by the pseudo-second-order kinetic model.The relationship between pH value and Zeta potential demonstrated that electrostatic interaction dominated the adsorption process.In addition,competitive adsorption showed that the effect of Na^+was negligible but the effect of Ca^2+was dependent on its concentration.Humid acid(HA)could slightly promote the absorption of CIP by SMD2.After five rounds of adsorption-desorption,the equilibrium adsorption capacity of SMD2 still remained at 288.6 mg/L for 50 mg/L CIP.Notably,SMD2 presented likewise superior adsorption capacity for CIP with concentrations of 10 and 50 mg/L in Minjiang source water.All the results indicated that this synthesis method is universal and that SMD2 has potential as an adsorbent for CIP removal from aquatic environments.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21577018,21477128,61376002)the National Science Foundation of Fujian Province(No.2016J01223)the Key Laboratory of Eco-materials Advanced Technology(Fuzhou University,China)
文摘The prevalent presence of fluoroquinolone antibiotics in aquatic environments has attracted considerable attention because of their harmful effects on humans and the ecological environment.Magnesium hydroxide nanocrystals were found to act as a simple and effective adsorbent to remove low-concentration ciprofloxacin(CIP)in aqueous solution.The as-prepared Mg(OH)2 nanocrystals exhibited excellent CIP adsorption performance and high selectivity toward CIP molecules compared with other antibiotics or aromatics,e.g.,norfloxacin(NOR)and eosin B(EB).The adsorbent showed pH-dependent adsorption,indicating that the adsorption process is probably dominated by an electrostatic interaction mechanism.In addition,structural analysis of the adsorbent indicated that coordination and hydrogen bonding between CIP and Mg(OH)2 nanocrystal might also be involved in the adsorption process.Moreover,the adsorbent could be easily recovered by pyrolysis and hydration without significant reduction of adsorption capacity.The superior adsorption behavior of Mg(OH)2 nanocrystal indicates that it may serve as a potential adsorbent material candidate for the selective removal of CIP from aquatic environments.
文摘The waste gas evolved from biodegradation of animal urine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In the process, activated carbon impregnated with H2SO4(H2SO4/C) is employed. Ammonia in the waste gas reacts with H2SO4 on the adsorbent instantaneously and completely to form (NIL)2SO4. The H2SO4/C adsorbent is high in NH3 adsorption capacity and regenerable. The NH3 removal capacity of this regenerable adsorbent is more than 30 times that of the adsorbents used normally in the industry. The spent H2SO4/C is regenerated by flowing low-pressure steam through the adsorbent bed to remove the (NH4)2SO4 from the adsorbent. The regeneration by-product is concentrated (NH4)2SO4 solution, which is a perfect liquid fertilizer for local use. Re-soaking the activated carbon with H2SO4 solution rejuvenates the activity of the adsorbent. Thus the H2SOJC can be reused repeatedly. In the mechanism of this reactive adsorption process, trace of H20 in the waste gas is a required, which lends itself to treating ammonia gas saturated with moisture from biodegradation of animal urine.
文摘The flow injection analysis was firstly used for studying a solid-liquid adsorption system, and the dynamics process in the adsorption of dyestuff with regenerable chitin was traced by an online method of flow injection-spectrophotometry. Experimental results indicate that there is a linearization between the tested signals and the height of peaks with reciprocity coefficient 0.9999 by using the flow injection-spectrophotometry system to study the dynamics adsorption process in solidliquid system. The method shows a good stability and reproducibility. It provides a new method for the studies on adsorption dynamics in solid- liquid system.
基金Financial support from the National Natural Science Foundation of China(22275193)the Natural Science Foundation of Fujian Province(E131AJ0101)+2 种基金Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZR115)STS Project of Putian-CAS(2020HJSTS001)Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences(E055AJ01)is gratefully acknowledged.
文摘Covalent/metal organic frameworks are highly attractive due to their tunable structure and properties,and broad applications in multiple fields.However,they still suffer from numbers of drawbacks including low solubility,harsh synthesis and fabrication,and low mechanical flexibility.Herein,we report a new organic framework consisting of macrocycles and organic frames in its periodic structure,and denote it as macrocycle organic polymer(MOP).The size-tunable macrocycles containing peripheral furan units are synthesized by anionic ring-opening polymerization,which undergo a reversible Diels-Alde reaction with bismaleimide to generate/degrade MOPs at given temperatures.Relying on above features,MOPs exhibit excellent flexibility,healable ability and recycle ability.Interestingly,owing to the“living”nature of anionic ring-opening polymerization,MOPs can self-grow into bigger sizes in the presence of monomer and catalysis,analogs to the living creatures.Moreover,their high porosity and rich thioether structure enable them as good metal ion absorbers and promising applications in wearable electronics.
基金This work was supported by the National Natural Science Foundation of China(Nos.21577018 and 21477128)and the National Science Foundation of Fujian Province(No.2016J01223).
文摘In this work,magnesium silicate-based sulfonated polystyrene sphere composites(SPS/MgSi)were synthesized by one-step(SMD1)and two-step(SMD2)methods.For SMD1,MgSi particles were densely assembled on the surface of SPS,assisted by complexation between Fe^3+and hydroxyl phenol.For SMD2,SPS/SiO2 was firstly obtained by the same method as SMD1,and then SPS/SiO2 was transformed directly to SPS/MgSi under hydrothermal conditions.Therefore,MgSi obtained by the two-step method had an interwoven structure.Compared to SPS,MgSi and SMD1,SMD2 presented a larger specific surface area and more negative surface charges.Therefore,SMD2 showed superior adsorption performance toward CIP with concentrations of 5,10 and 50 mg/L,and for 50 mg/L,the equilibrium adsorption capacity could reach 329.7 mg/g.The adsorption process is fast and can be described by the pseudo-second-order kinetic model.The relationship between pH value and Zeta potential demonstrated that electrostatic interaction dominated the adsorption process.In addition,competitive adsorption showed that the effect of Na^+was negligible but the effect of Ca^2+was dependent on its concentration.Humid acid(HA)could slightly promote the absorption of CIP by SMD2.After five rounds of adsorption-desorption,the equilibrium adsorption capacity of SMD2 still remained at 288.6 mg/L for 50 mg/L CIP.Notably,SMD2 presented likewise superior adsorption capacity for CIP with concentrations of 10 and 50 mg/L in Minjiang source water.All the results indicated that this synthesis method is universal and that SMD2 has potential as an adsorbent for CIP removal from aquatic environments.