高分六号卫星具有覆盖广、多种分辨率、波段多的优势,能为遥感解译提供更丰富的信息。为探究高分六号卫星新增波段在森林树种识别上的应用,本文以覆盖根河市阿龙山林业局的一期高分六号宽幅影像为数据源,基于特征优化空间算法(Feature S...高分六号卫星具有覆盖广、多种分辨率、波段多的优势,能为遥感解译提供更丰富的信息。为探究高分六号卫星新增波段在森林树种识别上的应用,本文以覆盖根河市阿龙山林业局的一期高分六号宽幅影像为数据源,基于特征优化空间算法(Feature Space Optimization,FSO)和最大似然分类法,分别利用高分六号的前4个波段和所有波段(8波段)的光谱、纹理等特征进行了森林树种分类,并逐一添加新增波段特征确定了各波段的贡献率排名。结果表明:在加入了优选出的均匀性纹理、均值纹理和角二阶矩纹理3种纹理特征后,前4波段和8波段的分类精度比只基于光谱特征时的精度分别高出13.23%和24.63%;利用8波段信息比只利用前4波段在基于光谱特征上的精度高11.88%,在基于光谱+纹理特征上则高23.24%;基于8波段光谱+纹理特征的树种分类精度最高,达到68.74%,新增4波段的贡献率排名为B6>B5>B8>B7,说明新增红边波段对于本次树种分类试验的贡献率最高,能为北方树种识别提供有效帮助。展开更多
Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was eff...Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was effective for vegetation identification and could improve LCC accuracy. However, there has been no investigation of the effects of RapidE ye images' red-edge band and vegetation indices on LCC in arid regions where there are spectrally similar land covers mixed with very high or low vegetation coverage information and bare land. This study focused on a typical inland arid desert region located in Dunhuang Basin of northwestern China. First, five feature sets including or excluding the red-edge band and vegetation indices were constructed. Then, a land cover classification system involving plant communities was developed. Finally, random forest algorithm-based models with different feature sets were utilized for LCC. The conclusions drawn were as follows: 1) the red-edge band showed slight contribution to LCC accuracy; 2) vegetation indices had a significant positive effect on LCC; 3) simultaneous addition of the red-edge band and vegetation indices achieved a significant overall accuracy improvement(3.46% from 86.67%). In general, vegetation indices had larger effect than the red-edge band, and simultaneous addition of them significantly increased the accuracy of LCC in arid regions.展开更多
Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field manage...Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field management.Red-edge information from hyperspectral data has been widely used to estimate crop LCC.However,after the advent of red-edge bands in satellite imagery,no systematic evaluation of the performance of satellite data has been conducted.Toward this end,we analyze herein the performance of winter wheat LCC retrieval of currant and forthcoming satellites(RapidEye,Sentinel-2 and EnMAP)and their new red-edge bands by using partial least squares regression(PLSR)and a vegetation-indexbased approach.These satellite spectral data were obtained by resampling ground-measured hyperspectral data under various field conditions and according to specific spectral response functions and spectral resolution.The results showed:1)This study confirmed that RapidEye,Sentinel-2 and EnMAP data are suitable for winter wheat LCC retrieval.For the PLSR approach,Sentinel-2 data provided more accurate estimates of LCC(R2=0.755,0.844,0.805 for 2002,2010,and 2002+2010)than do RapidEye data(R2=0.689,0.710,0.707 for 2002,2010,and 2002+2010)and EnMAP data(R2=0.735,0.867,0.771 for 2002,2010,and 2002+2010).For index-based approaches,the MERIS terrestrial chlorophyll index,which is a vegetation index with two red-edge bands,was the most sensitive and robust index for LCC for both the Sentinel-2 and EnMAP data(R2≥0.628),and the indices(NDRE1,SRRE1 and CIRE1)with a single red-edge band were the most sensitive and robust indices for the RapidEye data(R2≥0.420);2)According to the analysis of the effect of the wavelength and number of used red-edge spectral bands on LCC retrieval,the short-wavelength red-edge bands(from 699 to 734 nm)provided more accurate predictions when using the PLSR approach,whereas the long-wavelength red-edge bands(740 to 783 nm)gave more accurate predictions when using the vegetation indice(VI)approach.In additi展开更多
文摘高分六号卫星具有覆盖广、多种分辨率、波段多的优势,能为遥感解译提供更丰富的信息。为探究高分六号卫星新增波段在森林树种识别上的应用,本文以覆盖根河市阿龙山林业局的一期高分六号宽幅影像为数据源,基于特征优化空间算法(Feature Space Optimization,FSO)和最大似然分类法,分别利用高分六号的前4个波段和所有波段(8波段)的光谱、纹理等特征进行了森林树种分类,并逐一添加新增波段特征确定了各波段的贡献率排名。结果表明:在加入了优选出的均匀性纹理、均值纹理和角二阶矩纹理3种纹理特征后,前4波段和8波段的分类精度比只基于光谱特征时的精度分别高出13.23%和24.63%;利用8波段信息比只利用前4波段在基于光谱特征上的精度高11.88%,在基于光谱+纹理特征上则高23.24%;基于8波段光谱+纹理特征的树种分类精度最高,达到68.74%,新增4波段的贡献率排名为B6>B5>B8>B7,说明新增红边波段对于本次树种分类试验的贡献率最高,能为北方树种识别提供有效帮助。
基金Under the auspices of Fundamental Research Funds for Central Universities,China University of Geosciences(Wuhan)(No.CUGL150417)National Natural Science Foundation of China(No.41274036,41301026)
文摘Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was effective for vegetation identification and could improve LCC accuracy. However, there has been no investigation of the effects of RapidE ye images' red-edge band and vegetation indices on LCC in arid regions where there are spectrally similar land covers mixed with very high or low vegetation coverage information and bare land. This study focused on a typical inland arid desert region located in Dunhuang Basin of northwestern China. First, five feature sets including or excluding the red-edge band and vegetation indices were constructed. Then, a land cover classification system involving plant communities was developed. Finally, random forest algorithm-based models with different feature sets were utilized for LCC. The conclusions drawn were as follows: 1) the red-edge band showed slight contribution to LCC accuracy; 2) vegetation indices had a significant positive effect on LCC; 3) simultaneous addition of the red-edge band and vegetation indices achieved a significant overall accuracy improvement(3.46% from 86.67%). In general, vegetation indices had larger effect than the red-edge band, and simultaneous addition of them significantly increased the accuracy of LCC in arid regions.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19080304)the Agricultural Science and Technology Innovation of Sanya, China (2015KJ04)+4 种基金the Natural Science Foundation of Hainan Province, China (20164179, 2016CXTD015)the Technology Research, Development and Promotion Program of Hainan Province, China (ZDXM2015102)the Hainan Provincial Department of Science and Technology, China (ZDKJ2016021)the National Natural Science Foundation of China (41601466)the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (2017085)
文摘Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field management.Red-edge information from hyperspectral data has been widely used to estimate crop LCC.However,after the advent of red-edge bands in satellite imagery,no systematic evaluation of the performance of satellite data has been conducted.Toward this end,we analyze herein the performance of winter wheat LCC retrieval of currant and forthcoming satellites(RapidEye,Sentinel-2 and EnMAP)and their new red-edge bands by using partial least squares regression(PLSR)and a vegetation-indexbased approach.These satellite spectral data were obtained by resampling ground-measured hyperspectral data under various field conditions and according to specific spectral response functions and spectral resolution.The results showed:1)This study confirmed that RapidEye,Sentinel-2 and EnMAP data are suitable for winter wheat LCC retrieval.For the PLSR approach,Sentinel-2 data provided more accurate estimates of LCC(R2=0.755,0.844,0.805 for 2002,2010,and 2002+2010)than do RapidEye data(R2=0.689,0.710,0.707 for 2002,2010,and 2002+2010)and EnMAP data(R2=0.735,0.867,0.771 for 2002,2010,and 2002+2010).For index-based approaches,the MERIS terrestrial chlorophyll index,which is a vegetation index with two red-edge bands,was the most sensitive and robust index for LCC for both the Sentinel-2 and EnMAP data(R2≥0.628),and the indices(NDRE1,SRRE1 and CIRE1)with a single red-edge band were the most sensitive and robust indices for the RapidEye data(R2≥0.420);2)According to the analysis of the effect of the wavelength and number of used red-edge spectral bands on LCC retrieval,the short-wavelength red-edge bands(from 699 to 734 nm)provided more accurate predictions when using the PLSR approach,whereas the long-wavelength red-edge bands(740 to 783 nm)gave more accurate predictions when using the vegetation indice(VI)approach.In additi