摘要
利用高分辨率光谱仪在实地测得的光谱数据来识别新疆阜康地区的7种典型荒漠草种,对原始高光谱数据作预处理(微分和平滑),选取典型荒漠植被的光谱特征(红边、绿峰、红谷、RVI等)作为输入数据,植被类型作为输出数据,构建基于BP神经网络模型的典型荒漠草地分类器,进行了三组基于高光谱特征的草地类型分类实验,结果表明:(1)红边特征较其余吸收特征更能获得精确的分类结果;(2)波段550~790nnl间的窄波段光谱分类间隔中,20nm优于10nm的间隔;(3)草地分类器中BP网络模型的输入层、隐藏层神经元个数与BP网络训练时间、精度具有复杂的耦合关系,不可一概而论。
In order to identify the seven typical desert grasses of Xinjiang Fukang area,high-resolution spectroscopy is used to obtain the hyper-spectral data.After the preprocessing of the original hyper-spectral data,such as differentiation and smoothing,the typical desert grass classifier based on BP neural network is constructed, with the input data of typical desert grasses' spectral characters(red-edge, green peak, red valley, RVI, etc.) and the output data of vegetation types.Three groups of grass classification experiments based on hyper-spectral features demonstrate that: (1)Red-edge characteristics perform better than the other absorption features to obtain accurate classification results.(2)Between the narrow-band spectral classification interval 550~790 nm, interval 20 nm performs better than interval 10nm.(3)There are complex relationships between the input,output layers of BP neural network and the training time,precision of BP network.
出处
《计算机工程与应用》
CSCD
北大核心
2011年第12期225-228,共4页
Computer Engineering and Applications
基金
国家自然科学基金 No.60863003
国际科技合作项目(No.2009DFA12870)
教育部国家大学生创新性实验计划(No.101075540)
新疆大学博士启动基金(No.BS100128)~~
关键词
高光谱特征提取
反向反馈(BP)人工神经网络
红边特征
窄波段光谱
hyper-spectral feature extraction
Back Propagafion(BP) artificial neural network
red edge feature
narrow-band spectrum