期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于递归小波神经网络的江苏城镇夏季最高气温预报预警技术 被引量:5
1
作者 樊仲欣 陈旭红 谭桂容 《自然灾害学报》 CSCD 北大核心 2019年第6期56-69,共14页
针对目前数值天气预报产品释用方法上所存在的释用因子固化,无法应对特殊转折性天气的问题,应用一种基于动态因子检验的递归小波神经网络(Recurrent Wavelet Neural Network,RWNN)对江苏城镇夏季最高气温进行释用。该方法可以自动选取... 针对目前数值天气预报产品释用方法上所存在的释用因子固化,无法应对特殊转折性天气的问题,应用一种基于动态因子检验的递归小波神经网络(Recurrent Wavelet Neural Network,RWNN)对江苏城镇夏季最高气温进行释用。该方法可以自动选取气象要素且无需建立回归方程,具有泛用性好、灵活性高的特点。使用该方法基于T639的2017-2018年6-8月资料建立了江苏省南京、徐州、射阳、常州、苏州5地的最高气温预报预警模型。实验结果表明:南京、徐州、射阳3地模型的TT2和HSS35评分较反向传播神经网络方法分别平均提高了9个百分点和0.15,同时较卡尔曼滤波方法分别平均提高了17个百分点和0.2。 展开更多
关键词 地面气温 夏季最高气温 数值预报产品释用 动态因子检验 递归小波神经网络
下载PDF
基于递归小波神经网络的UAV姿态变结构优化控制 被引量:5
2
作者 陈贵平 《沈阳工业大学学报》 EI CAS 北大核心 2018年第1期94-98,共5页
无人机的姿态控制易受外界气流干扰和模型参数摄动影响,为了提高其姿态控制的精度和稳定度,提出了将变结构控制与递归小波神经网络相结合的优化鲁棒控制律.构建并分析了无人机的姿态运动模型,采用变结构控制来设计无人机姿态运动的稳定... 无人机的姿态控制易受外界气流干扰和模型参数摄动影响,为了提高其姿态控制的精度和稳定度,提出了将变结构控制与递归小波神经网络相结合的优化鲁棒控制律.构建并分析了无人机的姿态运动模型,采用变结构控制来设计无人机姿态运动的稳定控制律,将递归小波神经网络加入到控制闭环回路中以实现变结构控制律的优化,减弱控制律对模型准确度的依赖性,并在仿真验证中与传统方法进行了比较.结果表明,该控制律能够提高其姿态控制的稳定性,且具有较强鲁棒性、较短收敛时间和较小能量消耗,从而证明了本文方法的有效性和可行性. 展开更多
关键词 无人机 姿态控制 变结构控制 递归小波神经网络 优化控制 稳定性 鲁棒性 能量消耗
下载PDF
基于RWNN补偿的下肢外骨骼滑模控制
3
作者 张燕 王岩 +2 位作者 陈玲玲 刘作军 张瑞鑫 《控制工程》 CSCD 北大核心 2023年第1期39-46,共8页
针对下肢外骨骼系统精确动力学模型难以得到,且易受干扰等不确定性因素影响,提出一种基于递归小波神经网络(recurrent wavelet neural network,RWNN)补偿的滑模控制方法。结合拉格朗日原理和气动肌肉驱动特性,建立外骨骼系统模型,并将... 针对下肢外骨骼系统精确动力学模型难以得到,且易受干扰等不确定性因素影响,提出一种基于递归小波神经网络(recurrent wavelet neural network,RWNN)补偿的滑模控制方法。结合拉格朗日原理和气动肌肉驱动特性,建立外骨骼系统模型,并将模型分为结构参数已知的标称部分和结构参数未知的不确定部分;对于标称部分,采用滑模控制方法进行控制,对于不确定部分,采用递归小波神经网络进行逼近;根据Lyapunov稳定性原理,证明了闭环控制系统的稳定性。搭建实验平台进行验证,结果表明外骨骼系统能够较好地跟踪期望轨迹,验证了所提控制方法的有效性。 展开更多
关键词 下肢外骨骼 气动肌肉 滑模控制 递归小波神经网络
下载PDF
基于递归小波神经网络的非线性动态系统仿真 被引量:14
4
作者 赵凤遥 马震岳 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第7期1453-1455,1539,共4页
为提高动态递归神经网络的动态系统仿真能力,在Elman神经网络的基础上,提出动态递归小波神经网络(RWNN),给出了其动态梯度下降算法,并将其成功应用于非线性动态系统仿真。仿真算例表明,该网络具有收敛快,精度高等优点,仿真效果很好,同... 为提高动态递归神经网络的动态系统仿真能力,在Elman神经网络的基础上,提出动态递归小波神经网络(RWNN),给出了其动态梯度下降算法,并将其成功应用于非线性动态系统仿真。仿真算例表明,该网络具有收敛快,精度高等优点,仿真效果很好,同时具有较好的泛化性能,具有广阔的应用前景。 展开更多
关键词 ELMAN神经网络 递归小波神经网络(RWNN) 梯度下降算法 非线性动态系统 仿真
下载PDF
一种自适应模糊小波神经网络及其在交流伺服控制中的应用 被引量:7
5
作者 侯润民 刘荣忠 +2 位作者 高强 王力 邓桐彬 《兵工学报》 EI CAS CSCD 北大核心 2015年第5期781-788,共8页
针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRW... 针对某武器大功率交流伺服系统所存在的大变负载、慢时变、强耦合的非线性特性和不确定扰动等问题,提出了模糊小波神经网络(FWNN)间接自适应控制器,该控制器的特点为Takagi-Sugeno-Kang(TSK)模糊模型的后件部分由自回归小波神经网络(SRWNN)构成。给出了SRWNN参数的迭代算法,利用SRWNN辨识器为控制器提供实时梯度信息,有效地克服了参数变化和负载扰动等不确定因素的影响,且具有良好的动态特性。采用Lyapunov稳定性理论方法证明了闭环系统的稳定性。仿真研究和样机试验结果证明了所提方案的有效性和正确性。 展开更多
关键词 兵器科学与技术 大功率交流伺服系统 自回归小波神经网络 模糊小波神经网络间接自适应控制器 模糊小波神经网络
下载PDF
柔性铰接板振动视觉测量与小波神经网络控制
6
作者 邱志成 刘一鸿 李旻 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期998-1010,共13页
为了解决航天器上用于供能的太阳帆板类柔性薄板结构的振动问题,针对一种移动柔性铰接板系统构建了双目视觉系统的振动测控实验平台,采用双目立体视觉方法来检测振动,并设计了自回归小波神经网络控制器(Self-Recurrent Wavelet Neural N... 为了解决航天器上用于供能的太阳帆板类柔性薄板结构的振动问题,针对一种移动柔性铰接板系统构建了双目视觉系统的振动测控实验平台,采用双目立体视觉方法来检测振动,并设计了自回归小波神经网络控制器(Self-Recurrent Wavelet Neural Network Controller,SRWNNC)来抑制振动。对双目视觉系统进行了标定,基于视差原理和图像处理算法,通过解算标志点的三维坐标来获取振动信号。建立了系统的有限元模型,并通过辨识得到校正后的系统模型参数。基于辨识得到的模型在仿真环境中训练SRWNNC,用于实验系统的振动主动控制。分别针对移动柔性铰接板系统固定基座和平移轨迹运动两种情况,进行了双目视觉振动检测和振动控制仿真和实验研究。仿真和实验结果表明,双目视觉传感器对振动信号的检测精度小于0.1 mm,SRWNNC也展现出比大增益PD控制器更好的抑振效果,验证了双目视觉振动检测和SRWNNC抑制振动的准确性和有效性。 展开更多
关键词 双目视觉 移动柔性铰接板 自回归小波神经网络 振动抑制
下载PDF
基于自回归小波神经网络的机械臂自适应滑模控制
7
作者 杨佳 吴佩林 +2 位作者 杨理 寇东山 余斌 《空间控制技术与应用》 CSCD 北大核心 2024年第3期68-76,共9页
针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种... 针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种非奇异终端滑模面.利用多组自回归小波神经网络(self-recurrent wavelet neural network, SRWNN)分块逼近系统未知的动力学模型参数,并采用自适应更新律调整权重.通过积分控制项补偿SRWNN的逼近误差,并使用Lyapunov稳定性理论证明了系统稳定性.使用MATLAB进行仿真分析,分块SRWNN滑模控制与滑模控制、整体SRWNN滑模控制相比,关节角度跟踪误差的平均稳态误差分别降低了31.9%、76.5%,表明此方法是一种可靠、有效的轨迹跟踪控制方法. 展开更多
关键词 自回归小波神经网络 非奇异终端滑模 动力学模型 轨迹跟踪
下载PDF
基于递归模糊小波神经网络的INS-GNSS组合导航算法 被引量:6
8
作者 于仁海 曹春燕 +1 位作者 张闯 房美含 《上海海事大学学报》 北大核心 2021年第2期8-14,共7页
为提高惯性导航系统(inertial navigation system,INS)与全球卫星导航系统(global navigation satellite system,GNSS)相结合的组合导航系统在GNSS中断期间的精度,提出一种基于递归模糊小波神经网络(recurrent fuzzy wavelet neural net... 为提高惯性导航系统(inertial navigation system,INS)与全球卫星导航系统(global navigation satellite system,GNSS)相结合的组合导航系统在GNSS中断期间的精度,提出一种基于递归模糊小波神经网络(recurrent fuzzy wavelet neural network,RFWNN)的启发式神经网络结构,用于INS的速度和位置误差补偿。在GNSS正常工作时,利用INS-GNSS数据将RFWNN训练成一个高精度的预测模型;在GNSS中断期间,利用被训练好的RFWNN模型补偿INS的速度和位置误差。为对所提出的RFWNN辅助INS-GNSS的性能进行评估,进行实船试验,结果表明利用RFWNN能够有效地对GNSS中断时的速度和位置信息进行高精度修正。 展开更多
关键词 惯性导航系统(INS) 全球卫星导航系统(GNSS) 递归模糊小波神经网络(RFWNN)
下载PDF
具有预设性能的板球系统神经超扭曲滑模控制
9
作者 夏国锋 向凤红 《重庆大学学报》 CAS CSCD 北大核心 2024年第7期98-109,共12页
提出了一种新的具有预设性能的自回归小波神经网络(self-recurrent wavelet neural network,SRWNN)超扭曲非奇异快速终端滑模(super-twistingnon-singularfastterminalsliding mode,STNFTSM)控制方法(SRWNN_STNFTSM),在动力学不确定性... 提出了一种新的具有预设性能的自回归小波神经网络(self-recurrent wavelet neural network,SRWNN)超扭曲非奇异快速终端滑模(super-twistingnon-singularfastterminalsliding mode,STNFTSM)控制方法(SRWNN_STNFTSM),在动力学不确定性和未知扰动的情况下提高板球系统的跟踪控制性能。利用预设性能函数(prescribed performance function,PPF),将板球系统受约束的位置误差转换为无约束的误差模型。引入非奇异快速终端滑模(non-singular fast terminal sliding mode, NFTSM)面来消除常规终端滑模控制存在的奇异问题,并加入一个tanh函数的补偿项改进NFTSM滑模面,以调节轨迹跟踪的收敛速度和跟踪精度,同时结合超扭曲算法(super-twisting algorithm,STA)设计STNFTSM控制器,以削弱抖振和集总扰动的影响。针对系统存在的集总扰动,为了保证高跟踪精度,结合STNFTSM设计了自适应SRWNN补偿器来消除扰动,保证了鲁棒性。与现有常规滑模控制相比,仿真验证表明SRWNN_STNFTSM具有良好的跟踪性能和鲁棒性,能够对集总扰动下的板球系统进行准确跟踪。 展开更多
关键词 板球系统 预设性能控制 自回归小波神经网络 非奇异快速终端滑模 超扭曲算法
下载PDF
基于GA-SLFRWNN的空中目标威胁评估 被引量:5
10
作者 陈侠 刘子龙 梁红利 《西北工业大学学报》 EI CAS CSCD 北大核心 2019年第2期424-432,共9页
针对空战中目标威胁评估系统非线性、评估难度大且富含不确定信息的问题,研究了基于遗传算法优化模糊递归小波神经网络(single-hidden-layer fuzzy recurrent wavelet neural network optimized by genetic algorithm,GA-SLFRWNN)的目... 针对空战中目标威胁评估系统非线性、评估难度大且富含不确定信息的问题,研究了基于遗传算法优化模糊递归小波神经网络(single-hidden-layer fuzzy recurrent wavelet neural network optimized by genetic algorithm,GA-SLFRWNN)的目标威胁评估方法。首先通过分析威胁评估的影响因素及其信息的模糊性,将RWNN嵌入FNN的后件部分,以实现增强自学习能力的目的,然后采用GA对模型初始参数进行优化选取,并提出了基于李雅普诺夫理论的最优学习率。仿真实验表明:相比于FNN和FRWNN,该算法提高了系统的稳定性,加快了收敛速度,增强了预测精度。 展开更多
关键词 目标威胁评估 模糊神经网络 模糊递归小波神经网络 遗传算法 最优学习率
下载PDF
优化动态递归小波神经网络短期负荷预测模型 被引量:4
11
作者 张智晟 段晓燕 +2 位作者 李伟婕 龚文杰 孙雅明 《电力系统及其自动化学报》 CSCD 北大核心 2009年第5期30-35,共6页
提出了优化动态递归小波神经网络(dynamic recurrent wavelet neural network,DRWNN)短期负荷预测模型。与常规小波神经网络相比,DRWNN有两个关联层,关联层节点起存储网络内部状态的作用;模型构造过程中增强了网络的前馈与反馈联接,形... 提出了优化动态递归小波神经网络(dynamic recurrent wavelet neural network,DRWNN)短期负荷预测模型。与常规小波神经网络相比,DRWNN有两个关联层,关联层节点起存储网络内部状态的作用;模型构造过程中增强了网络的前馈与反馈联接,形成多层次的网络递归。采用分布估计算法和遗传算法相融合对DRWNN进行优化,融合实质是在解空间"宏观"和"微观"两个层面进行寻优,可克服DRWNN陷入局部最小,提高DRWNN的泛化能力。对两类不同负荷系统日、周预测仿真测试,验证了模型能有效提高预测精度。 展开更多
关键词 短期负荷预测 动态递归小波神经网络 分布估计算法 遗传算法
下载PDF
基于自回归小波神经网络的空中目标威胁评估 被引量:1
12
作者 白玉 李筱琳 《数字技术与应用》 2020年第3期84-85,87,共3页
针对空战中目标威胁评估系统非线性、评估难度大等特点,提出了自回归小波神经网络(Self-recurrent Wavelet Neural Network,SRWNN)的空中目标威胁评估方法。通过分析SRWNN结合递归神经网络(Recurrent Neural Net RNN)的吸引子动力学和WN... 针对空战中目标威胁评估系统非线性、评估难度大等特点,提出了自回归小波神经网络(Self-recurrent Wavelet Neural Network,SRWNN)的空中目标威胁评估方法。通过分析SRWNN结合递归神经网络(Recurrent Neural Net RNN)的吸引子动力学和WNN快速收敛的特点,建立了SRWNN模型,提出了SRWNN的参数优化学习算法,以实现增强自学习能力的目的,然后分析了威胁评估的影响因素,给出了基于SRWNN的空中目标威胁评估算法的程序设计。仿真实验结果表明,与WNN相比,该算法提高了系统的稳定性,加快了收敛速度,增强了预测精度。 展开更多
关键词 目标威胁评估 神经网络 小波神经网络 自回归小波神经网络
下载PDF
基于递归小波神经网络的流域降雨-径流过程动态模型 被引量:2
13
作者 郭瑞丽 赵凤遥 李亚楠 《水力发电学报》 EI CSCD 北大核心 2013年第2期54-59,共6页
根据流域降雨-径流过程的特点,采用递归小波神经网络(RWNN),建立了流域降雨-径流过程的动态模型,给出了RWNN模型网络的动态梯度下降训练算法。以陆浑水库上游伊河流域为研究实例,通过RWNN动态模型计算分析,表明该模型应用于流域降雨-径... 根据流域降雨-径流过程的特点,采用递归小波神经网络(RWNN),建立了流域降雨-径流过程的动态模型,给出了RWNN模型网络的动态梯度下降训练算法。以陆浑水库上游伊河流域为研究实例,通过RWNN动态模型计算分析,表明该模型应用于流域降雨-径流动态模拟具有可行性、高效性、适应性,具有广阔的应用前景。 展开更多
关键词 水文学 递归小波神经网络(RWNN) 降雨-径流过程 动态模型
原文传递
采用自适应自回归小波神经网络的单步预测控制 被引量:2
14
作者 杨红 高月芳 +1 位作者 罗飞 许玉格 《信息与控制》 CSCD 北大核心 2010年第5期553-558,共6页
针对非线性系统的控制问题,提出一种基于神经网络辨识的单步预测控制算法.算法在自回归小波神经网络的基础上,利用混沌机制消除了神经网络易陷入局部极值的缺点.采用自适应性学习率,提高神经网络的收敛能力和速度.以该神经网络为预测模... 针对非线性系统的控制问题,提出一种基于神经网络辨识的单步预测控制算法.算法在自回归小波神经网络的基础上,利用混沌机制消除了神经网络易陷入局部极值的缺点.采用自适应性学习率,提高神经网络的收敛能力和速度.以该神经网络为预测模型,引入输出反馈和偏差校正克服预测误差,以此构造一步加权预测控制性能指标.然后采用Brent一维搜索方法求取控制律,Brent法无需任何相关的导数信息,需调整的参数少,使得Brent法适合实时控制.仿真研究说明了该非线性预测控制器的有效性. 展开更多
关键词 预测控制 混沌 非线性系统 自适应自回归小波神经网络
下载PDF
基于模糊递归小波神经网络的葡萄酒品质预测 被引量:1
15
作者 周红标 柏小颖 +1 位作者 卜峰 应根旺 《计算机测量与控制》 2017年第4期21-24,共4页
针对葡萄酒品质预测模型难以建立的问题,提出一种基于模糊递归小波神经网络的葡萄酒品质预测模型;利用葡萄酒物理化学指标和品酒师打分作为模型的输入输出,采用梯度下降算法在线学习隶属函数层中心、宽度和小波函数平移因子、伸缩因子... 针对葡萄酒品质预测模型难以建立的问题,提出一种基于模糊递归小波神经网络的葡萄酒品质预测模型;利用葡萄酒物理化学指标和品酒师打分作为模型的输入输出,采用梯度下降算法在线学习隶属函数层中心、宽度和小波函数平移因子、伸缩因子、自反馈权重因子以及输出层权值;仿真实验时,首先利用Mackey—Glass混沌时间序列进行了性能测试,然后利用UCI数据集葡萄酒品质数据对所建立的品质预测模型进行了验证;结果显示,与多层感知器、径向基函数神经网络等传统前馈神经网络相比,构建的模糊递归小波神经网络品质预测模型具有更高的预测精度,更加适合于葡萄酒的品质预测。 展开更多
关键词 模糊递归小波神经网络 葡萄酒 品质预测
下载PDF
基于SRWNN-ADRC的交流伺服系统定位控制
16
作者 李佳恬 高强 +2 位作者 侯润民 侯远龙 李俊杰 《电光与控制》 CSCD 北大核心 2021年第1期98-102,111,共6页
针对高炮位置交流伺服系统控制存在的外界扰动以及非线性特性等问题,提出了一种自回归小波神经网络改进型单神经元自抗扰控制器(SRWNN-ADRC)。单神经元自适应控制器(SNAC)将非线性误差反馈控制律中的非线性增益作为其权值系数,利用SRWN... 针对高炮位置交流伺服系统控制存在的外界扰动以及非线性特性等问题,提出了一种自回归小波神经网络改进型单神经元自抗扰控制器(SRWNN-ADRC)。单神经元自适应控制器(SNAC)将非线性误差反馈控制律中的非线性增益作为其权值系数,利用SRWNN作为辨识器,在线辨识被控对象的梯度信息并将其提供给SNAC。通过SNAC的自学习功能实现ADRC中参数的在线调节。仿真结果证明,此控制策略使系统具有较好的稳态性能,抗干扰能力强,且动态品质也得到了优化。 展开更多
关键词 自回归小波神经网络 交流伺服控制 自抗扰控制 在线整定
下载PDF
基于新型小波神经网络的电力故障回放技术 被引量:7
17
作者 杜新伟 刘涤尘 李媛 《电力系统自动化》 EI CSCD 北大核心 2007年第15期84-88,共5页
在已有小波神经网络研究的基础上,从小波库中抽取最优小波包基作为神经元激励函数,并由时频逼近原理确定网络结构和结点个数;采用速度跟踪粒子群优化训练网络权值,克服了传统学习算法收敛速度慢和易陷入局部极小的缺陷。介绍了该网络的... 在已有小波神经网络研究的基础上,从小波库中抽取最优小波包基作为神经元激励函数,并由时频逼近原理确定网络结构和结点个数;采用速度跟踪粒子群优化训练网络权值,克服了传统学习算法收敛速度慢和易陷入局部极小的缺陷。介绍了该网络的结构设计和参数训练方法,利用仿真实验证明其能够精确和快速地逼近非线性系统,并将该网络应用于电力故障回放装置中功率放大部分的系统辨识,建立装置的输入输出模型,根据模型输出和理想放大值确定修正值表,对故障录波数据在数字域内修正后再投入装置进行故障回放测试,有效解决了回放波形的非线性失真。 展开更多
关键词 故障回放 小波神经网络 小波包基 粒子群优化 速度跟踪
下载PDF
应用模糊技术的递归小波神经网络太阳日总辐射预测 被引量:2
18
作者 林星春 曹家枞 陈洁 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期573-578,632,共7页
考虑到人工神经网络在非线性函数逼近方面的特性和小波函数良好的时频域多分辨分析能力,建立了结合两者优点的递归小波BP网络(RWBPNN)模型,用以对地面太阳日总辐射进行准确预测.该模型将气象台的天气阴晴预报进行模糊化处理后输入神经网... 考虑到人工神经网络在非线性函数逼近方面的特性和小波函数良好的时频域多分辨分析能力,建立了结合两者优点的递归小波BP网络(RWBPNN)模型,用以对地面太阳日总辐射进行准确预测.该模型将气象台的天气阴晴预报进行模糊化处理后输入神经网络,增加有用信息以改善模型的预测精度.同时还提出了批量平均权值法来训练网络,有效地改善了初始参数的选择问题.实例以及模型间的比较说明了本模型应用于太阳辐射预测具有更高精度和实际可行性. 展开更多
关键词 太阳日总辐射 预测 递归小波BP神经网络 模糊技术 误差
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部