由于脑肿瘤的大小和形状呈不规则状态,从三维磁共振图像中自动分割脑肿瘤是一项具有挑战性的任务.而目前的方法存在两个问题:基于3D建模的方法参数量较大难以训练而且全局或远距离上、下文信息的关联性不足;模型忽略局部区域细节特征使...由于脑肿瘤的大小和形状呈不规则状态,从三维磁共振图像中自动分割脑肿瘤是一项具有挑战性的任务.而目前的方法存在两个问题:基于3D建模的方法参数量较大难以训练而且全局或远距离上、下文信息的关联性不足;模型忽略局部区域细节特征使得分割结果边界模糊.为解决上述问题,本文提出了循环分层解耦卷积和最大滤波(recurrent hierarchical-decoupled convolution and maximum filtering,RHMF)的轻量网络实现三维脑肿瘤图像分割.该网络在特征提取阶段提出循环分层解耦卷积取代标准卷积,减少参数利用多时域的反馈信息建立全局上、下文信息关联.引入改进的多尺度策略对不同尺度下的多层次特征进行提取融合,提高网络的目标识别能力.在定位阶段做局部域细节处理,提出了最大滤波模块激活目标区域像素实现特征图的像素级定位,增强目标区域像素与其他区域像素的区别,进一步细化分割,解决边界模糊问题.在BraTS2020数据集上的实验结果表明,RHMF-Net在增强肿瘤区、整体肿瘤区和核心肿瘤区的平均Dice系数值分别为77.23%、90.01%和83.10%,参数量为0.42×106.展开更多
现有的传统孔隙分割方法不能准确提取岩心图像中细小狭长的孔隙,且容易受到岩石图像噪声的干扰,针对上述问题,提出了一种深度学习网络模型ARC-Unet(Attention and Recurrent-Convolution Unet),用于更加精确的分割岩石孔隙。采用Unet作...现有的传统孔隙分割方法不能准确提取岩心图像中细小狭长的孔隙,且容易受到岩石图像噪声的干扰,针对上述问题,提出了一种深度学习网络模型ARC-Unet(Attention and Recurrent-Convolution Unet),用于更加精确的分割岩石孔隙。采用Unet作为基础网络,并在网络上加入注意力机制,用于解决在分割时小面积的孔隙容易被漏分割的情况。将循环卷积模块代替原来的卷积模块,可以拟合更多的岩石特征,提高孔隙分割的准确度。通过在采集并制作的岩石数据集上进行训练并在通过在测试集的分割结果上进行模型评估,改进模型在测试集上的F1达到了88.15%,有着较好的岩石孔隙分割结果。展开更多
本文主要是对在线问诊中产生的医疗文本进行命名实体识别的研究.使用在线医疗问答网站的数据,采用{B, I, O}标注体系构建数据集,抽取疾病、治疗、检查和症状四个医疗实体.以BiLSTM-CRF为基准模型,提出两种深度学习模型IndRNN-CRF和IDCNN...本文主要是对在线问诊中产生的医疗文本进行命名实体识别的研究.使用在线医疗问答网站的数据,采用{B, I, O}标注体系构建数据集,抽取疾病、治疗、检查和症状四个医疗实体.以BiLSTM-CRF为基准模型,提出两种深度学习模型IndRNN-CRF和IDCNN-BiLSTM-CRF,并在自构建数据集上验证模型的有效性.将新提出的两种模型与基准模型通过实验对比得出:模型IDCNN-BiLSTM-CRF的F1值0.8116,超过了BiLSTM-CRF的F1值0.8009, IDCNN-BiLSTM-CRF整体性能好于BiLSTM-CRF模型;模型IndRNN-CRF的精确率0.8427,但该模型在召回率上低于基准模型BiLSTM-CRF.展开更多
文摘由于脑肿瘤的大小和形状呈不规则状态,从三维磁共振图像中自动分割脑肿瘤是一项具有挑战性的任务.而目前的方法存在两个问题:基于3D建模的方法参数量较大难以训练而且全局或远距离上、下文信息的关联性不足;模型忽略局部区域细节特征使得分割结果边界模糊.为解决上述问题,本文提出了循环分层解耦卷积和最大滤波(recurrent hierarchical-decoupled convolution and maximum filtering,RHMF)的轻量网络实现三维脑肿瘤图像分割.该网络在特征提取阶段提出循环分层解耦卷积取代标准卷积,减少参数利用多时域的反馈信息建立全局上、下文信息关联.引入改进的多尺度策略对不同尺度下的多层次特征进行提取融合,提高网络的目标识别能力.在定位阶段做局部域细节处理,提出了最大滤波模块激活目标区域像素实现特征图的像素级定位,增强目标区域像素与其他区域像素的区别,进一步细化分割,解决边界模糊问题.在BraTS2020数据集上的实验结果表明,RHMF-Net在增强肿瘤区、整体肿瘤区和核心肿瘤区的平均Dice系数值分别为77.23%、90.01%和83.10%,参数量为0.42×106.
文摘现有的传统孔隙分割方法不能准确提取岩心图像中细小狭长的孔隙,且容易受到岩石图像噪声的干扰,针对上述问题,提出了一种深度学习网络模型ARC-Unet(Attention and Recurrent-Convolution Unet),用于更加精确的分割岩石孔隙。采用Unet作为基础网络,并在网络上加入注意力机制,用于解决在分割时小面积的孔隙容易被漏分割的情况。将循环卷积模块代替原来的卷积模块,可以拟合更多的岩石特征,提高孔隙分割的准确度。通过在采集并制作的岩石数据集上进行训练并在通过在测试集的分割结果上进行模型评估,改进模型在测试集上的F1达到了88.15%,有着较好的岩石孔隙分割结果。
文摘本文主要是对在线问诊中产生的医疗文本进行命名实体识别的研究.使用在线医疗问答网站的数据,采用{B, I, O}标注体系构建数据集,抽取疾病、治疗、检查和症状四个医疗实体.以BiLSTM-CRF为基准模型,提出两种深度学习模型IndRNN-CRF和IDCNN-BiLSTM-CRF,并在自构建数据集上验证模型的有效性.将新提出的两种模型与基准模型通过实验对比得出:模型IDCNN-BiLSTM-CRF的F1值0.8116,超过了BiLSTM-CRF的F1值0.8009, IDCNN-BiLSTM-CRF整体性能好于BiLSTM-CRF模型;模型IndRNN-CRF的精确率0.8427,但该模型在召回率上低于基准模型BiLSTM-CRF.