摘要
针对使用深度学习进行医学图像分割时出现的网络退化问题,通过融合更大尺度的特征映射实现更加精确的图像分割,提出一种基于循环残差卷积神经网络的图像分割算法.首先引入循环卷积模块实现离散步长上的特征提取,提高图像上下文语义信息的利用率,实现更多、更广泛的特征映射提取;然后结合残差学习单元与循环卷积单元形成循环残差卷积模块,替换普通卷积神经网络的前馈卷积单元以解决深层网络模型面临的网络退化问题;最后引入全尺度跳跃连接将不同尺度下的特征图融合,生成分割图像.在PyTorch环境下用3个数据集与其他4种算法进行比较的实验结果表明,所提算法的分割性能更好,图像分割的精确度更高.
In order to solve the problem of network degradation when using deep learning for medical image segmentation,and to achieve more accurate image segmentation effect by extracting larger scale feature mapping,an image segmentation model based on recurrent residual convolutional neural network is proposed.Firstly,the recurrent convolution unit is introduced to realize the feature extraction on discrete step size,improves the utilization of image context semantic information,and realizes more extensive feature mapping extraction.Then,combined with the residual learning unit and the recurrent convolution unit,the recurrent residual convolution unit is formed to replace the feed-forward convolution unit of the ordinary convolution neural network to solve the network degradation problem faced by the deep network model.Finally,the full-scale skip connection is introduced to fuse the feature images under different scales to generate the segmented image.The experimental results of three datasets compared with the other four algorithms in PyTorch environment show that the proposed algorithm has better segmentation performance and higher image segmentation accuracy.
作者
金燕
薛智中
姜智伟
Jin Yan;Xue Zhizhong;Jiang Zhiwei(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2022年第8期1205-1215,共11页
Journal of Computer-Aided Design & Computer Graphics
基金
浙江省自然科学基金(LY17F010015)。
关键词
医学图像分割
残差学习
循环卷积
U-Net
全尺度跳跃连接
medical image segmentation
residual learning
recurrent convolution
U-Net
full scale skip connection