The calcite dissolution rates at 50-250 ℃ and 20 MPa in deionized water with flow rate varying from 0.2 to 5 mL/min were experimentally measured in a continuous flow column pressure vessel reactor. Equilibrium concen...The calcite dissolution rates at 50-250 ℃ and 20 MPa in deionized water with flow rate varying from 0.2 to 5 mL/min were experimentally measured in a continuous flow column pressure vessel reactor. Equilibrium concentration (Ceq) of calcite dissolution in deionized water at 20 MPa was determined using dissolution data according to the iterative method presented by Jeschke and Dreybrodt. The equilibrium concentrations at 50, 100, 150, 200 and 250 ℃ are 1.84×10^-4, 2.23×10^-4, 2.25×10^-4, 2.31×10^-4 and 2.24×10^-4 mol/L, respectively. The Ceq increases first and then decreases with temperature varying from 50 to 250 ℃ at 20 MPa, and the same variation trend occurs at 10 MPa with lower values. The maximum value (or extremum) of Ceq would increase with temperature at constant pressures. The dissolution reaction of calcite in this experiment is approaching the calcite equilibrium, and the reaction order doesn't keep a constant at different temperatures, which could imply that a change of the reac- tion mechanism was occurring. The Arrhenius equation shouldn't be used to calculate apparent activation energy using rate constant data at different temperatures when the reaction order or reaction mechanism changed.展开更多
The effect of copper concentration on the performance of the catalytic reaction between silicon and methyl chloride was investigated using online gas chromatogram. The catalyst concentration greatly influences various...The effect of copper concentration on the performance of the catalytic reaction between silicon and methyl chloride was investigated using online gas chromatogram. The catalyst concentration greatly influences various aspects of the direct organosilane synthesis process, including the reaction rate, the selec- tivity, and the silicon conversion. The reaction activity and the silicon conversion increase as the catalyst concentration increases. However, the reaction selectivity decreases for the catalyst concentrations more .than 9 wt.%. The cross-sections of deactivated contact mass particles were observed by optical microscopy and analyzed by scanning electron microscope combined with energy dispersive X-ray detector (SEM-EDX) The observations showed that a textured substance formed on the original flat surface of the silicon particles after deactivation with copper only in a shallow surface layer of the contact mass. This indicates that the copper diffusion is the rate limiting step which causes the reaction deactivation.展开更多
基金supported by the National Basic Research Program of China (973 Program) (No. 2009CB421006)the State Key Laboratory of Geological Processes and Mineral Resources (No. GPMR200843)
文摘The calcite dissolution rates at 50-250 ℃ and 20 MPa in deionized water with flow rate varying from 0.2 to 5 mL/min were experimentally measured in a continuous flow column pressure vessel reactor. Equilibrium concentration (Ceq) of calcite dissolution in deionized water at 20 MPa was determined using dissolution data according to the iterative method presented by Jeschke and Dreybrodt. The equilibrium concentrations at 50, 100, 150, 200 and 250 ℃ are 1.84×10^-4, 2.23×10^-4, 2.25×10^-4, 2.31×10^-4 and 2.24×10^-4 mol/L, respectively. The Ceq increases first and then decreases with temperature varying from 50 to 250 ℃ at 20 MPa, and the same variation trend occurs at 10 MPa with lower values. The maximum value (or extremum) of Ceq would increase with temperature at constant pressures. The dissolution reaction of calcite in this experiment is approaching the calcite equilibrium, and the reaction order doesn't keep a constant at different temperatures, which could imply that a change of the reac- tion mechanism was occurring. The Arrhenius equation shouldn't be used to calculate apparent activation energy using rate constant data at different temperatures when the reaction order or reaction mechanism changed.
文摘The effect of copper concentration on the performance of the catalytic reaction between silicon and methyl chloride was investigated using online gas chromatogram. The catalyst concentration greatly influences various aspects of the direct organosilane synthesis process, including the reaction rate, the selec- tivity, and the silicon conversion. The reaction activity and the silicon conversion increase as the catalyst concentration increases. However, the reaction selectivity decreases for the catalyst concentrations more .than 9 wt.%. The cross-sections of deactivated contact mass particles were observed by optical microscopy and analyzed by scanning electron microscope combined with energy dispersive X-ray detector (SEM-EDX) The observations showed that a textured substance formed on the original flat surface of the silicon particles after deactivation with copper only in a shallow surface layer of the contact mass. This indicates that the copper diffusion is the rate limiting step which causes the reaction deactivation.