铜锌锡硫(CZTS)半导体常作为对电极材料被应用于量子点敏化太阳能电池(QDSCs)中,然而效率一直低于4%。本文采用热注入法合成出纳米尺寸的CZTS并制成对电极(CZTS/FTO),用其组装的Cd Se QDSCs和Cd Se Te QDSCs的效率(PCE)分别达到了5.75%...铜锌锡硫(CZTS)半导体常作为对电极材料被应用于量子点敏化太阳能电池(QDSCs)中,然而效率一直低于4%。本文采用热注入法合成出纳米尺寸的CZTS并制成对电极(CZTS/FTO),用其组装的Cd Se QDSCs和Cd Se Te QDSCs的效率(PCE)分别达到了5.75%和7.64%。电化学阻抗谱、塔菲尔极化等表征证明电池效率的提高与CZTS良好的导电性及催化活性联系密切。展开更多
量子点敏化太阳能电池(quantum dot sensitized solar cells,QDSSCs)因其制备成本低、工艺简单及量子点(QDs)本身的优异性能(如尺寸效应和多激子效应)和高的理论转化率等优点,近年来受到广泛关注。对电极是QDSSCs的重要组成部分,也是影...量子点敏化太阳能电池(quantum dot sensitized solar cells,QDSSCs)因其制备成本低、工艺简单及量子点(QDs)本身的优异性能(如尺寸效应和多激子效应)和高的理论转化率等优点,近年来受到广泛关注。对电极是QDSSCs的重要组成部分,也是影响电池性能重要因素之一。综述了对电极的研究进展,着重介绍了对电极材料的分类、制备方法及优缺点,并就对电极的发展前景进行了展望。展开更多
Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. T...Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. The morphology of TiO2 electrode is one of the most important factors in QDSSCs. Inverse opal (IO) TiO2 electrode, which has periodic mesoporous structure, is useful for QDSSCs because of better penetration of electrolyte than conventional nanoparticulate TiO2 electrode. In addition, the ordered three dimensional structure of IO-TiO2 would be better for electron transport. We have found that open circuit voltage Voc of QDSSCs with IO-TiO2 electrodes was much higher (0.2 V) than that with nanoparticulate TiO2 electrodes. But short circuit current density Jsc was lower in the case of IO-TiO2 electrodes because of the smaller surface area of IO-TiO2. In this study, for increasing surface area of IO-TiO2, we applied TiCl4 post treatment on IO-TiO2 and investigated the effect of the post treatment on photovoltaic properties of CdSe QD sensitized IO-TiO2 solar cells. It was found that Jsc could be enhanced due to TiCl4 post treatment, but decreased again for more than one cycle treatment, which indicates excess post treatment may lead to worse penetration of electrolyte. Our results indicate that the appropriate post treatment can improve the energy conversion efficiency of the QDSSCs.展开更多
文摘铜锌锡硫(CZTS)半导体常作为对电极材料被应用于量子点敏化太阳能电池(QDSCs)中,然而效率一直低于4%。本文采用热注入法合成出纳米尺寸的CZTS并制成对电极(CZTS/FTO),用其组装的Cd Se QDSCs和Cd Se Te QDSCs的效率(PCE)分别达到了5.75%和7.64%。电化学阻抗谱、塔菲尔极化等表征证明电池效率的提高与CZTS良好的导电性及催化活性联系密切。
文摘量子点敏化太阳能电池(quantum dot sensitized solar cells,QDSSCs)因其制备成本低、工艺简单及量子点(QDs)本身的优异性能(如尺寸效应和多激子效应)和高的理论转化率等优点,近年来受到广泛关注。对电极是QDSSCs的重要组成部分,也是影响电池性能重要因素之一。综述了对电极的研究进展,着重介绍了对电极材料的分类、制备方法及优缺点,并就对电极的发展前景进行了展望。
文摘Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. The morphology of TiO2 electrode is one of the most important factors in QDSSCs. Inverse opal (IO) TiO2 electrode, which has periodic mesoporous structure, is useful for QDSSCs because of better penetration of electrolyte than conventional nanoparticulate TiO2 electrode. In addition, the ordered three dimensional structure of IO-TiO2 would be better for electron transport. We have found that open circuit voltage Voc of QDSSCs with IO-TiO2 electrodes was much higher (0.2 V) than that with nanoparticulate TiO2 electrodes. But short circuit current density Jsc was lower in the case of IO-TiO2 electrodes because of the smaller surface area of IO-TiO2. In this study, for increasing surface area of IO-TiO2, we applied TiCl4 post treatment on IO-TiO2 and investigated the effect of the post treatment on photovoltaic properties of CdSe QD sensitized IO-TiO2 solar cells. It was found that Jsc could be enhanced due to TiCl4 post treatment, but decreased again for more than one cycle treatment, which indicates excess post treatment may lead to worse penetration of electrolyte. Our results indicate that the appropriate post treatment can improve the energy conversion efficiency of the QDSSCs.