In the present study, a method for the quantitative analysis of multi-components by single marker(QAMS) has been developed and validated for the simultaneous determination of echinacoside(ECH), tubuloside A, acteoside...In the present study, a method for the quantitative analysis of multi-components by single marker(QAMS) has been developed and validated for the simultaneous determination of echinacoside(ECH), tubuloside A, acteoside, isoacteoside, and2’-acetylacteoside in Cistanches Herba. ECH was used as the internal standard(IS) to obtain the relative correction factors(RCFs) of the other four phenylethanoid glycosides(PhGs);meanwhile, various influencing factors on RCFs were investigated under different conditions. The content of each component was calculated with RCF. The results were compared with those obtained by the external standard method(ESM) to verify the feasibility and accuracy of the established QAMS method. No significant difference was found in the quantitative results of 10 batches of Cistanches Herba between QAMS and ESM. The proposed QAMS method for simultaneous determination of PhGs in Cistanches Herba is accurate and feasible, providing an efficient and economical approach for the quality control of Cistanches Herba.展开更多
This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates (SEs), and numerical predictions at the global scale. The strategy is designed to remove syste...This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates (SEs), and numerical predictions at the global scale. The strategy is designed to remove systemic bias and random error from each individual daily precipitation source to produce a better gridded global daily precipitation product through three steps. First, a cumulative distribution function matching procedure is performed to remove systemic bias over gauge-located land areas. Then, the overall biases in SEs and model predictions (MPs) over ocean areas are corrected using a rescaled strategy based on monthly precipitation. Third, an optimal interpolation (OI)-based merging scheme (referred as the HL-OI scheme) is used to combine unbiased gahge observations, SEs, and MPs to reduce random error from each source and to produce a gauge--satellite-model merged daily precipitation analysis, called BMEP-d (Beijing Climate Center Merged Estimation of Precipitation with daily resolution), with complete global coverage. The BMEP-d data from a four-year period (2011- 14) demonstrate the ability of the merging strategy to provide global daily precipitation of substantially improved quality. Benefiting from the advantages of the HL-OI scheme for quantitative error estimates, the better source data can obtain more weights during the merging processes. The BMEP-d data exhibit higher consistency with satellite and gauge source data at middle and low latitudes, and with model source data at high latitudes. Overall, independent validations against GPCP-1DD (GPCP one-degree daily) show that the consistencies between B MEP-d and GPCP-1DD are higher than those of each source dataset in terms of spatial pattern, temporal variability, probability distribution, and statistical precipitation events.展开更多
[ Objective] The research aimed to study application of the attenuation correction technology in C-band radar precipitation estimation. [ Method~ Based on CINRAD-CB radar data in Shaanxi, we conducted the attenuation ...[ Objective] The research aimed to study application of the attenuation correction technology in C-band radar precipitation estimation. [ Method~ Based on CINRAD-CB radar data in Shaanxi, we conducted the attenuation correction experiment by using iteration method and Kufa method respectively. Moreover, we conducted application expedment of the Kufa attenuation correction method in the quantitative precipitation esti- mation. [ Result~ Attenuation correction technology could compensate for attenuation problem of the echo at the distant range. Calculation result of the iteration method finally tended to that of the Kufa method. Moreover, iteration method spent more time. Therefore, Kufa attenuation correction technology was more suitable for business operation. When strong echo was near radar, generated attenuation was more obvious, and application value of the attenuation correction was bigger. Attenuation correction technology was used for quantitative precipitation estimation, which was favor- able for improving accuracy of the precipitation estimation. But we should conduct detailed planning on calculation scheme of the precipitation esti- mation because that different calculation schemes had great influences on accuracy of the quantitative precipitation estimation. [ Cendusien] This research provided a basis for improving accuracy of the quantitative precipitation estimation in Shaanxi. Key words Attenuation correction展开更多
Differential electrochemical mass spectrometry(DEMS)is one of the most powerful techniques for both the mechanistic and kinetic study of complicated electrocatalytic reactions.It can provide information on the nature ...Differential electrochemical mass spectrometry(DEMS)is one of the most powerful techniques for both the mechanistic and kinetic study of complicated electrocatalytic reactions.It can provide information on the nature and yields of the products generated,their production rate,and the structure-activity relationship between the electrocatalysts and the target reactions.The precise calibration of the mass signal is a prerequisite for the accurate evaluation of reaction kinetics.In this work,we use the oxidation reactions of CO and HCOOH to demonstrate how certain conditions,such as the flow rate and solution composition,affect the collection efficiency and ionization probability of the species to be detected.These parameters can affect the determination of the mass calibration constant and the accuracy of the subsequent quantitative DEMS analysis.We show the relationship between the mass calibration constant and the flow rate,and provide strategies for eliminating this and the related problems.展开更多
基金National Key R&D Program of China(Grant Nos.2017YFC1702400,2018YFC1707300 and 2018YFC1707904)
文摘In the present study, a method for the quantitative analysis of multi-components by single marker(QAMS) has been developed and validated for the simultaneous determination of echinacoside(ECH), tubuloside A, acteoside, isoacteoside, and2’-acetylacteoside in Cistanches Herba. ECH was used as the internal standard(IS) to obtain the relative correction factors(RCFs) of the other four phenylethanoid glycosides(PhGs);meanwhile, various influencing factors on RCFs were investigated under different conditions. The content of each component was calculated with RCF. The results were compared with those obtained by the external standard method(ESM) to verify the feasibility and accuracy of the established QAMS method. No significant difference was found in the quantitative results of 10 batches of Cistanches Herba between QAMS and ESM. The proposed QAMS method for simultaneous determination of PhGs in Cistanches Herba is accurate and feasible, providing an efficient and economical approach for the quality control of Cistanches Herba.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41275076, 41305057, 41175066, 41175086, and 40905046)the Beijing Natural Science Foundation (Grant No. 8144046)+1 种基金the National High Technology Research and Development Program of China (Grant Nos. 2009AA122005 and 2009BAC51B03)the National Basic Research Program of China (Grant No. 2010CB 951902)
文摘This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates (SEs), and numerical predictions at the global scale. The strategy is designed to remove systemic bias and random error from each individual daily precipitation source to produce a better gridded global daily precipitation product through three steps. First, a cumulative distribution function matching procedure is performed to remove systemic bias over gauge-located land areas. Then, the overall biases in SEs and model predictions (MPs) over ocean areas are corrected using a rescaled strategy based on monthly precipitation. Third, an optimal interpolation (OI)-based merging scheme (referred as the HL-OI scheme) is used to combine unbiased gahge observations, SEs, and MPs to reduce random error from each source and to produce a gauge--satellite-model merged daily precipitation analysis, called BMEP-d (Beijing Climate Center Merged Estimation of Precipitation with daily resolution), with complete global coverage. The BMEP-d data from a four-year period (2011- 14) demonstrate the ability of the merging strategy to provide global daily precipitation of substantially improved quality. Benefiting from the advantages of the HL-OI scheme for quantitative error estimates, the better source data can obtain more weights during the merging processes. The BMEP-d data exhibit higher consistency with satellite and gauge source data at middle and low latitudes, and with model source data at high latitudes. Overall, independent validations against GPCP-1DD (GPCP one-degree daily) show that the consistencies between B MEP-d and GPCP-1DD are higher than those of each source dataset in terms of spatial pattern, temporal variability, probability distribution, and statistical precipitation events.
文摘[ Objective] The research aimed to study application of the attenuation correction technology in C-band radar precipitation estimation. [ Method~ Based on CINRAD-CB radar data in Shaanxi, we conducted the attenuation correction experiment by using iteration method and Kufa method respectively. Moreover, we conducted application expedment of the Kufa attenuation correction method in the quantitative precipitation esti- mation. [ Result~ Attenuation correction technology could compensate for attenuation problem of the echo at the distant range. Calculation result of the iteration method finally tended to that of the Kufa method. Moreover, iteration method spent more time. Therefore, Kufa attenuation correction technology was more suitable for business operation. When strong echo was near radar, generated attenuation was more obvious, and application value of the attenuation correction was bigger. Attenuation correction technology was used for quantitative precipitation estimation, which was favor- able for improving accuracy of the precipitation estimation. But we should conduct detailed planning on calculation scheme of the precipitation esti- mation because that different calculation schemes had great influences on accuracy of the quantitative precipitation estimation. [ Cendusien] This research provided a basis for improving accuracy of the quantitative precipitation estimation in Shaanxi. Key words Attenuation correction
基金supported by the National Natural Science Foundation of China(no.21872132,21832004,91545124)the 973 Program from the Ministry of Science and Technology of China(no.2015CB932301)。
文摘Differential electrochemical mass spectrometry(DEMS)is one of the most powerful techniques for both the mechanistic and kinetic study of complicated electrocatalytic reactions.It can provide information on the nature and yields of the products generated,their production rate,and the structure-activity relationship between the electrocatalysts and the target reactions.The precise calibration of the mass signal is a prerequisite for the accurate evaluation of reaction kinetics.In this work,we use the oxidation reactions of CO and HCOOH to demonstrate how certain conditions,such as the flow rate and solution composition,affect the collection efficiency and ionization probability of the species to be detected.These parameters can affect the determination of the mass calibration constant and the accuracy of the subsequent quantitative DEMS analysis.We show the relationship between the mass calibration constant and the flow rate,and provide strategies for eliminating this and the related problems.