Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of su...Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of suspension bridges under three types of near-fault pulse-type earthquakes,this paper takes China’s longest high-speed railway suspension bridge—Wufengshan Yangtze River Bridge-as the background and establishes a spatial model of the rail-bridge interaction of a suspension bridge.The results show that:under the constant load state,the distribution of additional force under three types of pulse-type earthquakes is generally consistent,and pulse-type earthquakes produce more significant responses than non-pulse-type earthquakes;with fling-step pulse being the largest,it is advised to specifically consider the influence of the fling-step pulse in the calculation.Under the initial condition of the main beam temperature loading history,all rail-bridge additional forces increase significantly,particularly affecting the steel rail system.The value of the rail-bridge interaction additional force under the near-fault earthquake in the initial state of the suspension bridge when the train deflection load is loaded from the tower to the mid-span is more significant and particularly unfavourable.The initial effect of the braking load will weaken the effect of the deflection load loading history.The results of the study indicate that the effect of the initial state of suspension bridges is an important factor influencing the rail-bridge interaction under near-fault pulse-type earthquakes,which needs to be considered in future seismic design.展开更多
In displacement-based seismic design, inelastic displacement ratio spectra (IDRS) are particularly useful for estimating the maximum lateral inelastic displacement demand of a nonlinear SDOF system from the maximum ...In displacement-based seismic design, inelastic displacement ratio spectra (IDRS) are particularly useful for estimating the maximum lateral inelastic displacement demand of a nonlinear SDOF system from the maximum elastic displacement demand of its counterpart linear elastic SDOF system. In this study, the characteristics of IDRS for near-fault pulse-type ground motions are investigated based on a great number of earthquake ground motions. The influence of site conditions, ratio of peak ground velocity (PGV) to peak ground acceleration (PGA), the PGV, and the maximum incremental velocity (MIV) on IDRS are also evaluated. The results indicate that the effect of near-fault ground motions on IDRS are significant only at periods between 0.2 s - 1.5 s, where the amplification can approach 20%. The PGV/PGA ratio has the most significant influence on IDRS among the parameters considered. It is also found that site conditions only slightly affect the IDRS.展开更多
The two characteristics of near-fault ground motions, i.e., the forward directivity effect and permanent displacement effect, result in long period and large velocity pulse in the velocity time history and large step ...The two characteristics of near-fault ground motions, i.e., the forward directivity effect and permanent displacement effect, result in long period and large velocity pulse in the velocity time history and large step pulse in the displacement time history. Considering the two effects, a simple expression of continuous function for equivalent velocity pulse time history is presented in this paper. The equivalent pulse model, in which the pulse period, peak velocity and pulse shape are described by five parameters, is highly advantageous to fit and simulate the pulse-type velocity time history. The equivalent pulse model comprises only one low-frequency component while the high-frequency component of a pulse-type earthquake record cannot be considered. Based on 28 records of 11 earthquakes, the pulse frequency of pulse-type records is generally less than 1 Hz. Therefore the low-frequency component and high-frequency component are simulated respectively and combined them together to generate a pulse-type ground motion.展开更多
This paper presents a methodology for constructing seismic design spectra in near-fault regions. By analyzing the characteristics of near-fault pulse-type ground motions, an equivalent pulse model is proposed, which c...This paper presents a methodology for constructing seismic design spectra in near-fault regions. By analyzing the characteristics of near-fault pulse-type ground motions, an equivalent pulse model is proposed, which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions. The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions, which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations. The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions. The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense. The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.展开更多
基金Supported by grants from the Hunan Pro vince Inno vation Plat-form and Talent Plan Project(Grant No.2021RC3017).
文摘Due to the limitations of railway route selection,some high-speed railways are inevitably built near or across fault zones.To study the distribution of rail-bridge interaction under different load history states of suspension bridges under three types of near-fault pulse-type earthquakes,this paper takes China’s longest high-speed railway suspension bridge—Wufengshan Yangtze River Bridge-as the background and establishes a spatial model of the rail-bridge interaction of a suspension bridge.The results show that:under the constant load state,the distribution of additional force under three types of pulse-type earthquakes is generally consistent,and pulse-type earthquakes produce more significant responses than non-pulse-type earthquakes;with fling-step pulse being the largest,it is advised to specifically consider the influence of the fling-step pulse in the calculation.Under the initial condition of the main beam temperature loading history,all rail-bridge additional forces increase significantly,particularly affecting the steel rail system.The value of the rail-bridge interaction additional force under the near-fault earthquake in the initial state of the suspension bridge when the train deflection load is loaded from the tower to the mid-span is more significant and particularly unfavourable.The initial effect of the braking load will weaken the effect of the deflection load loading history.The results of the study indicate that the effect of the initial state of suspension bridges is an important factor influencing the rail-bridge interaction under near-fault pulse-type earthquakes,which needs to be considered in future seismic design.
基金National Natural Science Foundation of China Under Grants No. 50608024 andNo.50538050Opening Laboratory of Earthquake Engineering and Engineering Vibration Foundation Under Grant No.2007001
文摘In displacement-based seismic design, inelastic displacement ratio spectra (IDRS) are particularly useful for estimating the maximum lateral inelastic displacement demand of a nonlinear SDOF system from the maximum elastic displacement demand of its counterpart linear elastic SDOF system. In this study, the characteristics of IDRS for near-fault pulse-type ground motions are investigated based on a great number of earthquake ground motions. The influence of site conditions, ratio of peak ground velocity (PGV) to peak ground acceleration (PGA), the PGV, and the maximum incremental velocity (MIV) on IDRS are also evaluated. The results indicate that the effect of near-fault ground motions on IDRS are significant only at periods between 0.2 s - 1.5 s, where the amplification can approach 20%. The PGV/PGA ratio has the most significant influence on IDRS among the parameters considered. It is also found that site conditions only slightly affect the IDRS.
基金National Natural Science Foundation of China (50478063)
文摘The two characteristics of near-fault ground motions, i.e., the forward directivity effect and permanent displacement effect, result in long period and large velocity pulse in the velocity time history and large step pulse in the displacement time history. Considering the two effects, a simple expression of continuous function for equivalent velocity pulse time history is presented in this paper. The equivalent pulse model, in which the pulse period, peak velocity and pulse shape are described by five parameters, is highly advantageous to fit and simulate the pulse-type velocity time history. The equivalent pulse model comprises only one low-frequency component while the high-frequency component of a pulse-type earthquake record cannot be considered. Based on 28 records of 11 earthquakes, the pulse frequency of pulse-type records is generally less than 1 Hz. Therefore the low-frequency component and high-frequency component are simulated respectively and combined them together to generate a pulse-type ground motion.
基金Special Scientific Research Fund of Earthquake Profession of China under Grant No.201208013National Natural Science Foundation of China under Grant No.51238012
文摘This paper presents a methodology for constructing seismic design spectra in near-fault regions. By analyzing the characteristics of near-fault pulse-type ground motions, an equivalent pulse model is proposed, which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions. The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions, which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations. The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions. The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense. The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.