采用氯化锌法,以花生壳为原料制备高性能的活性炭,并对其实验影响条件进行分析研究。通过正交实验得出最优制备条件:花生壳与氯化锌溶液料液质量比为1∶2.5,氯化锌溶液质量分数60%,活化温度600℃,活化时间90 m in。并对此条件下制备的...采用氯化锌法,以花生壳为原料制备高性能的活性炭,并对其实验影响条件进行分析研究。通过正交实验得出最优制备条件:花生壳与氯化锌溶液料液质量比为1∶2.5,氯化锌溶液质量分数60%,活化温度600℃,活化时间90 m in。并对此条件下制备的活性炭的性能进行了测定,其表观密度0.4146 g/mL,水分含量9.3067%,铁含量0.002%,亚甲基蓝吸附值12.5 mL/(0.1 g),碘的吸附值1 269.08 mg/g。展开更多
The composition, microstructure, mechanical and frictional properties of PTFE and its fillers were represented and analyzed by XRD, SEM, DSC, XPS and large-scale polarizing microscope. The results show that PTFE has a...The composition, microstructure, mechanical and frictional properties of PTFE and its fillers were represented and analyzed by XRD, SEM, DSC, XPS and large-scale polarizing microscope. The results show that PTFE has a flocculent structure with high melt temperature and decomposition temperature, big contact angle and crystallinity, and low surface hardness, compression strength, friction coefficient, wearing capacity and surface energy. Cooling rate influenced the friction coefficient and wear resistance. Graphite and molybdenum disulfide have a flake structure, and molybdenum disulfide has a big contact angle and low surface energy. Copper powder has a globular structure and its chief component is Cu-Pb alloy, and there is a loose layer on the surface. Carbon fiber has a rod structure and there are C=O and C-O-C polar groups on the skeleton surface. The decreasing order of water absorption capacity is graphite, carbon fiber, molybdenum disulfide, PTFE and copper powder.展开更多
文摘The composition, microstructure, mechanical and frictional properties of PTFE and its fillers were represented and analyzed by XRD, SEM, DSC, XPS and large-scale polarizing microscope. The results show that PTFE has a flocculent structure with high melt temperature and decomposition temperature, big contact angle and crystallinity, and low surface hardness, compression strength, friction coefficient, wearing capacity and surface energy. Cooling rate influenced the friction coefficient and wear resistance. Graphite and molybdenum disulfide have a flake structure, and molybdenum disulfide has a big contact angle and low surface energy. Copper powder has a globular structure and its chief component is Cu-Pb alloy, and there is a loose layer on the surface. Carbon fiber has a rod structure and there are C=O and C-O-C polar groups on the skeleton surface. The decreasing order of water absorption capacity is graphite, carbon fiber, molybdenum disulfide, PTFE and copper powder.