There are many problems associated with coiled tubing drilling operations, such as great circulation pressure loss inside pipe, difficulties in weight on bit(WOB) transferring, and high probability of differential sti...There are many problems associated with coiled tubing drilling operations, such as great circulation pressure loss inside pipe, difficulties in weight on bit(WOB) transferring, and high probability of differential sticking. Aiming at these problems, solids-free brine drilling fluid system was developed on the basis of formulation optimization with brine base fluid experiment, which was evaluated and applied to field drilling. Based on the optimization of flow pattern regulator, salt-resisting filtrate reducer, high performance lubricant and bit cleaner, the basic formula of the solids-free brine drilling fluid system was formed: brine +(0.1%-0.2%) Na OH +(0.2%-0.4%) HT-XC +(2.0%-3.0%) YLJ-1 +(0.5%-2.0%) SDNR +(1.0%-2.5%) FT-1 A +(1.0%-5.0%) SD-505 + compound salt density regulator. Lab evaluation showed that the fluid had satisfactory temperature resistance(up to 150 ℃), excellent cuttings tolerance(up to 25%), and strong inhibition(92.7% cuttings recovery); Moreover, its lubrication performance was similar to that of all oil-based drilling fluid. The wellbore could be fairly cleaned at annular up-flow velocity of more than 0.8 m/s if the ratio of yield point to plastic viscosity was kept above 0.5. This fluid system has been applied in the drilling of three coiled tubing sidetracking wells in the Liaohe Oilfield, during which the system was stable and easy to adjust, resulting in excellent cuttings transportation, high ROP, regular hole size, and no down hole accidents. In summary, the solids-free brine drilling fluid system can meet the technical requirements of coiled tubing drilling.展开更多
With the rapid development of deepwater drilling operations,more and more complex technical challenges have to be faced due to the rigorous conditions encountered.One of these challenges is that the drilling fluid use...With the rapid development of deepwater drilling operations,more and more complex technical challenges have to be faced due to the rigorous conditions encountered.One of these challenges is that the drilling fluid used must had good rheological properties at low temperatures and high ability to inhibit hydrate formation.Synthetic drilling fluid has been widely applied to deepwater drilling operations due to its high penetration rate,excellent rheological properties,good ability to prevent hydrate formation,and high biodegradability.A synthetic drilling fluid formulation was developed in our laboratory.The rheological properties of this drilling fluid at low temperatures (0-20 °C) were tested with a 6-speed viscometer and its ability to inhibit hydrate formation was evaluated at 20 MPa CH 4 gas and 0 °C by differential scanning calorimetry (DSC).Several factors influencing the low temperature rheological properties of this synthetic drilling fluid were studied in this paper.These included the viscosity of the base fluid,the amount of CEMU and organic clay,and the water volume fraction.展开更多
With special drilling operation equipment and specific conditions of geology, how does drilling fluid carry cuttings effectively? So far, it is still an urgent problem for drilling researchers to study. This work just...With special drilling operation equipment and specific conditions of geology, how does drilling fluid carry cuttings effectively? So far, it is still an urgent problem for drilling researchers to study. This work just aims at the actual engineering background to develop studying model. In this paper, according to non Newtonian fluid mechanics, the law of the solid liquid, two phase fluid flow and actual drilling engineering, the major factors affecting cuttings transport are drilling fluid velocity, hole inclination and fluid rheological properties. Getting a clear understanding of the law of drilling fluid and its cutting taking mechanism, this paper puts forward a model for analysis of field data and quantitative forecast of cutting taking capability of drilling fluid. The full scale annular test section was 6.1 m with 76 and 114 mm drillpipe in a 203 mm ID (wellbore diameter). Hole angle varied from 0° to 90°.展开更多
基金Supported by the China National Science and Technology Major Project(2016ZX05020-004)
文摘There are many problems associated with coiled tubing drilling operations, such as great circulation pressure loss inside pipe, difficulties in weight on bit(WOB) transferring, and high probability of differential sticking. Aiming at these problems, solids-free brine drilling fluid system was developed on the basis of formulation optimization with brine base fluid experiment, which was evaluated and applied to field drilling. Based on the optimization of flow pattern regulator, salt-resisting filtrate reducer, high performance lubricant and bit cleaner, the basic formula of the solids-free brine drilling fluid system was formed: brine +(0.1%-0.2%) Na OH +(0.2%-0.4%) HT-XC +(2.0%-3.0%) YLJ-1 +(0.5%-2.0%) SDNR +(1.0%-2.5%) FT-1 A +(1.0%-5.0%) SD-505 + compound salt density regulator. Lab evaluation showed that the fluid had satisfactory temperature resistance(up to 150 ℃), excellent cuttings tolerance(up to 25%), and strong inhibition(92.7% cuttings recovery); Moreover, its lubrication performance was similar to that of all oil-based drilling fluid. The wellbore could be fairly cleaned at annular up-flow velocity of more than 0.8 m/s if the ratio of yield point to plastic viscosity was kept above 0.5. This fluid system has been applied in the drilling of three coiled tubing sidetracking wells in the Liaohe Oilfield, during which the system was stable and easy to adjust, resulting in excellent cuttings transportation, high ROP, regular hole size, and no down hole accidents. In summary, the solids-free brine drilling fluid system can meet the technical requirements of coiled tubing drilling.
基金the financial support from the National Science and Technology Key Projects(2008ZX05056-002-03-04 and 2008ZX05030-005-07-03)
文摘With the rapid development of deepwater drilling operations,more and more complex technical challenges have to be faced due to the rigorous conditions encountered.One of these challenges is that the drilling fluid used must had good rheological properties at low temperatures and high ability to inhibit hydrate formation.Synthetic drilling fluid has been widely applied to deepwater drilling operations due to its high penetration rate,excellent rheological properties,good ability to prevent hydrate formation,and high biodegradability.A synthetic drilling fluid formulation was developed in our laboratory.The rheological properties of this drilling fluid at low temperatures (0-20 °C) were tested with a 6-speed viscometer and its ability to inhibit hydrate formation was evaluated at 20 MPa CH 4 gas and 0 °C by differential scanning calorimetry (DSC).Several factors influencing the low temperature rheological properties of this synthetic drilling fluid were studied in this paper.These included the viscosity of the base fluid,the amount of CEMU and organic clay,and the water volume fraction.
文摘With special drilling operation equipment and specific conditions of geology, how does drilling fluid carry cuttings effectively? So far, it is still an urgent problem for drilling researchers to study. This work just aims at the actual engineering background to develop studying model. In this paper, according to non Newtonian fluid mechanics, the law of the solid liquid, two phase fluid flow and actual drilling engineering, the major factors affecting cuttings transport are drilling fluid velocity, hole inclination and fluid rheological properties. Getting a clear understanding of the law of drilling fluid and its cutting taking mechanism, this paper puts forward a model for analysis of field data and quantitative forecast of cutting taking capability of drilling fluid. The full scale annular test section was 6.1 m with 76 and 114 mm drillpipe in a 203 mm ID (wellbore diameter). Hole angle varied from 0° to 90°.