Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I...Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.展开更多
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca...Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.展开更多
A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are...A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly.展开更多
Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes p...Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes promise huge performance improvement at the cost of cooperation among base stations,the large numbers of user equipment and base station make jointly optimizing the available resource very challenging and even prohibitive. How to decompose the resource allocation problem is a critical issue. In this paper,we exploit factor graphs to design a distributed resource allocation algorithm for ultra dense networks,which consists of power allocation,subcarrier allocation and cell association. The proposed factor graph based distributed algorithm can decompose the joint optimization problem of resource allocation into a series of low complexity subproblems with much lower dimensionality,and the original optimization problem can be efficiently solved via solving these subproblems iteratively. In addition,based on the proposed algorithm the amounts of exchanging information overhead between the resulting subprob-lems are also reduced. The proposed distributed algorithm can be understood as solving largely dimensional optimization problem in a soft manner,which is much preferred in practical scenarios. Finally,the performance of the proposed low complexity distributed algorithm is evaluated by several numerical results.展开更多
In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are de...In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are derived by permuting the matrices of the corresponding RC-LDPC block codes,are systematic and have maximum encoding memory.Simulation results show that the proposed RC-LDPC convolutional codes with belief propagation(BP) decoding collectively offer a steady improvement on performance compared with the block counterparts over the binary-input additive white Gaussian noise channels(BI-AWGNCs).展开更多
Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surf...Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments.展开更多
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of...Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.展开更多
Software system can be classified into many function modules from the perspective of user. Unified modeling language( UML) class diagram of each function module was extracted,and design characteristic metrics which in...Software system can be classified into many function modules from the perspective of user. Unified modeling language( UML) class diagram of each function module was extracted,and design characteristic metrics which influenced software maintainability were selected based on UML class diagram.Choosing metrics of UML class diagram as predictors,and mean maintenance time of function module was regarded as software maintainability parameter. Software maintainability models were built by using back propagation( BP) neural network and radial basis function( RBF) neural network, respectively and were simulated by MATLAB. In order to evaluate the performance of models,the training results were analyzed and compared with leaveone-out cross-validation and model performance evaluation criterion. The result indicated that RBF arithmetic was superior to BP arithmetic in predicting software maintainability.展开更多
Objective To test a modified otologic drill under different drilling conditions for its ability to identify drilling faults and stop drilling.Methods Based on force analysis and previous works,an otologic drill was mo...Objective To test a modified otologic drill under different drilling conditions for its ability to identify drilling faults and stop drilling.Methods Based on force analysis and previous works,an otologic drill was modified and equipped with three sensors.Under various conditions,the drill was used to simulate three drilling faults and normal drilling,and signals from the drill were analyzed to extract the characteristic signal.A multi-sensor information fusion system and a stop program were designed to recognize drilling faults and stop drilling.Results Signals from each sensor changed consistently in response to drilling condition changes,with high repeatability and regularity.The average identification rate was 72.625%,68.575%,70.5% and 81.3% respectively for the three simulated drilling faults and normal drilling.The stop program stopped drilling in 0.2~ 0.3 seconds when a drilling faults was detected.Conclusions This study shows that the forces acting on the drill bit change predictably in the three simulated drilling conditions;that using suitable BP neural networks,the drilling faults can be reliably identified,and that a stop program based upon characteristic signal recognition can stop drilling quickly upon detecting drilling faults.This lays a foundation for development of a system capable of predicting drilling faults and automatic drill control.Further studies are being undertaken for practical application of such a system.展开更多
The molecular structures of hydrocarbons in straight run gasoline were numerically coded. The nonlinear quantitative relationship(QSRR) between gas chromatography(GC) retention indices of the hydrocarbons and their m...The molecular structures of hydrocarbons in straight run gasoline were numerically coded. The nonlinear quantitative relationship(QSRR) between gas chromatography(GC) retention indices of the hydrocarbons and their molecular structures were established by using an error back propagation(BP) algorithm. The GC retention indices of 150 hydrocarbons were then predicted by removing 15 compounds(as a test set) and using the 135 remained molecules as a calibration set. Through this procedure, all the compounds in the whole data set were then predicted in groups of 15 compounds. The results obtained by BP with the correlation coefficient and the standard deviation 0 993 4 and 16 54, are satisfied.展开更多
基金National Natural Science Foundation of China(No. 60474021)
文摘Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.
基金supported by the National Natural Science Foundation of China (51075068)the Southeast University Science Foundation Funded Program (KJ2009348)
文摘Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.
基金Supported by the National Natural Science Foundation of China (No.60572100)by the Royal Society (U.K.) International Joint Projects 2006/R3-Cost Share with NSFC (No.60711130233)
文摘A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly.
基金supported by China Mobile Research Institute under grant [2014] 451National Natural Science Foundation of China under Grant No. 61176027+2 种基金Beijing Natural Science Foundation(4152047)the 863 project No.2014AA01A701111 Project of China under Grant B14010
文摘Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes promise huge performance improvement at the cost of cooperation among base stations,the large numbers of user equipment and base station make jointly optimizing the available resource very challenging and even prohibitive. How to decompose the resource allocation problem is a critical issue. In this paper,we exploit factor graphs to design a distributed resource allocation algorithm for ultra dense networks,which consists of power allocation,subcarrier allocation and cell association. The proposed factor graph based distributed algorithm can decompose the joint optimization problem of resource allocation into a series of low complexity subproblems with much lower dimensionality,and the original optimization problem can be efficiently solved via solving these subproblems iteratively. In addition,based on the proposed algorithm the amounts of exchanging information overhead between the resulting subprob-lems are also reduced. The proposed distributed algorithm can be understood as solving largely dimensional optimization problem in a soft manner,which is much preferred in practical scenarios. Finally,the performance of the proposed low complexity distributed algorithm is evaluated by several numerical results.
基金the National Natural Science Foundation of China(Nos.61401164,61471131 and 61201145)the Natural Science Foundation of Guangdong Province(No.2014A030310308)
文摘In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are derived by permuting the matrices of the corresponding RC-LDPC block codes,are systematic and have maximum encoding memory.Simulation results show that the proposed RC-LDPC convolutional codes with belief propagation(BP) decoding collectively offer a steady improvement on performance compared with the block counterparts over the binary-input additive white Gaussian noise channels(BI-AWGNCs).
基金Supported by the National Natural Science Foundation of China(No.50879025)
文摘Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments.
基金National Natural Science Foundation of China(No.61371024)Aviation Science Fund of China(No.2013ZD53051)+2 种基金Aerospace Technology Support Fund of Chinathe Industry-Academy-Research Project of AVIC,China(No.cxy2013XGD14)the Open Research Project of Guangdong Key Laboratory of Popular High Performance Computers/Shenzhen Key Laboratory of Service Computing and Applications,China
文摘Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.
文摘Software system can be classified into many function modules from the perspective of user. Unified modeling language( UML) class diagram of each function module was extracted,and design characteristic metrics which influenced software maintainability were selected based on UML class diagram.Choosing metrics of UML class diagram as predictors,and mean maintenance time of function module was regarded as software maintainability parameter. Software maintainability models were built by using back propagation( BP) neural network and radial basis function( RBF) neural network, respectively and were simulated by MATLAB. In order to evaluate the performance of models,the training results were analyzed and compared with leaveone-out cross-validation and model performance evaluation criterion. The result indicated that RBF arithmetic was superior to BP arithmetic in predicting software maintainability.
基金supported by Beijing Municipal Natural Science Foundation(4092027)
文摘Objective To test a modified otologic drill under different drilling conditions for its ability to identify drilling faults and stop drilling.Methods Based on force analysis and previous works,an otologic drill was modified and equipped with three sensors.Under various conditions,the drill was used to simulate three drilling faults and normal drilling,and signals from the drill were analyzed to extract the characteristic signal.A multi-sensor information fusion system and a stop program were designed to recognize drilling faults and stop drilling.Results Signals from each sensor changed consistently in response to drilling condition changes,with high repeatability and regularity.The average identification rate was 72.625%,68.575%,70.5% and 81.3% respectively for the three simulated drilling faults and normal drilling.The stop program stopped drilling in 0.2~ 0.3 seconds when a drilling faults was detected.Conclusions This study shows that the forces acting on the drill bit change predictably in the three simulated drilling conditions;that using suitable BP neural networks,the drilling faults can be reliably identified,and that a stop program based upon characteristic signal recognition can stop drilling quickly upon detecting drilling faults.This lays a foundation for development of a system capable of predicting drilling faults and automatic drill control.Further studies are being undertaken for practical application of such a system.
文摘The molecular structures of hydrocarbons in straight run gasoline were numerically coded. The nonlinear quantitative relationship(QSRR) between gas chromatography(GC) retention indices of the hydrocarbons and their molecular structures were established by using an error back propagation(BP) algorithm. The GC retention indices of 150 hydrocarbons were then predicted by removing 15 compounds(as a test set) and using the 135 remained molecules as a calibration set. Through this procedure, all the compounds in the whole data set were then predicted in groups of 15 compounds. The results obtained by BP with the correlation coefficient and the standard deviation 0 993 4 and 16 54, are satisfied.