期刊文献+
共找到870篇文章
< 1 2 44 >
每页显示 20 50 100
基于人工神经网络的百度地图坐标解密方法 被引量:14
1
作者 潘伟洲 陈振洲 李兴民 《计算机工程与应用》 CSCD 2014年第17期110-113,119,共5页
提出了一种针对百度地图坐标加密算法的解密方法,利用百度开放的坐标转换接口获取多组GPS和百度地图坐标对,基于BP神经网络拟合出逆转换函数,利用训练后的BP网络来预测新的百度坐标所对应的GPS坐标。实验结果证明,该方法得到的GPS坐标... 提出了一种针对百度地图坐标加密算法的解密方法,利用百度开放的坐标转换接口获取多组GPS和百度地图坐标对,基于BP神经网络拟合出逆转换函数,利用训练后的BP网络来预测新的百度坐标所对应的GPS坐标。实验结果证明,该方法得到的GPS坐标与实际的GPS坐标较为接近,因而可以达到较为理想的解密结果。 展开更多
关键词 人工神经网络 百度地图 全球定位系统(GPS) 反向传播(bp) 解密 Global POSITIONING System(GPS) BACK propagation(bp)
下载PDF
FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK 被引量:7
2
作者 ZHANG Dailin CHEN Youping +2 位作者 AI Wu ZHOU Zude KONG Ching Tom 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期13-16,共4页
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I... Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network. 展开更多
关键词 Linear motor (LM) Back propagationbp algorithm Neural network Anti-disturbance technology
下载PDF
Application of quantum neural networks in localization of acoustic emission 被引量:5
3
作者 Aidong Deng Li Zhao Wei Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期507-512,共6页
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca... Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more. 展开更多
关键词 acoustic emission(AE) LOCALIZATION quantum genetic algorithm(QGA) back propagationbp neural network.
下载PDF
BFA BASED NEURAL NETWORK FOR IMAGE COMPRESSION 被引量:4
4
作者 Chu Ying Mi Hua +2 位作者 Ji Zhen Shao Zibo Q. H. Wu 《Journal of Electronics(China)》 2008年第3期405-408,共4页
A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are... A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly. 展开更多
关键词 Bacterial Foraging Algorithm (BFA) Artificial Neural Network (ANN) Back propagationbp Image compression
下载PDF
Distributed Resource Allocation in Ultra-Dense Networks via Belief Propagation 被引量:2
5
作者 CHEN Siyi XING Chengwen FEI Zesong 《China Communications》 SCIE CSCD 2015年第11期79-91,共13页
Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes p... Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes promise huge performance improvement at the cost of cooperation among base stations,the large numbers of user equipment and base station make jointly optimizing the available resource very challenging and even prohibitive. How to decompose the resource allocation problem is a critical issue. In this paper,we exploit factor graphs to design a distributed resource allocation algorithm for ultra dense networks,which consists of power allocation,subcarrier allocation and cell association. The proposed factor graph based distributed algorithm can decompose the joint optimization problem of resource allocation into a series of low complexity subproblems with much lower dimensionality,and the original optimization problem can be efficiently solved via solving these subproblems iteratively. In addition,based on the proposed algorithm the amounts of exchanging information overhead between the resulting subprob-lems are also reduced. The proposed distributed algorithm can be understood as solving largely dimensional optimization problem in a soft manner,which is much preferred in practical scenarios. Finally,the performance of the proposed low complexity distributed algorithm is evaluated by several numerical results. 展开更多
关键词 RESOURCE ALLOCATION distributed optimization BELIEF propagation(bp) ultradense network
下载PDF
Construction of Rate-Compatible(RC) Low-Density Parity-Check(LDPC) Convolutional Codes Based on RC-LDPC Block Codes 被引量:1
6
作者 穆丽伟 韩国军 刘志勇 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第6期679-683,共5页
In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are de... In this paper,a family of rate-compatible(RC) low-density parity-check(LDPC) convolutional codes can be obtained from RC-LDPC block codes by graph extension method.The resulted RC-LDPC convolutional codes,which are derived by permuting the matrices of the corresponding RC-LDPC block codes,are systematic and have maximum encoding memory.Simulation results show that the proposed RC-LDPC convolutional codes with belief propagation(BP) decoding collectively offer a steady improvement on performance compared with the block counterparts over the binary-input additive white Gaussian noise channels(BI-AWGNCs). 展开更多
关键词 rate-compatible(RC) low-density parity-check(LDPC) convolutional codes systematic maximum encoding memory belief propagation(bp) decoding
原文传递
Artificial Neural Network and Full Factorial Design Assisted AT-MRAM on Fe Oxides, Organic Materials, and Fe/Mn Oxides in Surficial Sediments 被引量:1
7
作者 GAO Qian WANG Zhi-zeng WANG Qian LI Shan-shan LI Yu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第6期944-948,共5页
Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surf... Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments. 展开更多
关键词 Back propagationbp artificial neural network Full factorial design Fe/Mn oxide Organic material ATRAZINE Interaction
下载PDF
Combinatorial Optimization Based Analog Circuit Fault Diagnosis with Back Propagation Neural Network 被引量:1
8
作者 李飞 何佩 +3 位作者 王向涛 郑亚飞 郭阳明 姬昕禹 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期774-778,共5页
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of... Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN. 展开更多
关键词 analog circuit fault diagnosis back propagation(bp) neural network combinatorial optimization TOLERANCE genetic algorithm(G A) Levenberg-Marquardt algorithm(LMA)
下载PDF
Softw are Maintainability Prediction with UML Class Diagram
9
作者 刘丽 朱小冬 郝学良 《Journal of Donghua University(English Edition)》 EI CAS 2015年第1期157-161,共5页
Software system can be classified into many function modules from the perspective of user. Unified modeling language( UML) class diagram of each function module was extracted,and design characteristic metrics which in... Software system can be classified into many function modules from the perspective of user. Unified modeling language( UML) class diagram of each function module was extracted,and design characteristic metrics which influenced software maintainability were selected based on UML class diagram.Choosing metrics of UML class diagram as predictors,and mean maintenance time of function module was regarded as software maintainability parameter. Software maintainability models were built by using back propagation( BP) neural network and radial basis function( RBF) neural network, respectively and were simulated by MATLAB. In order to evaluate the performance of models,the training results were analyzed and compared with leaveone-out cross-validation and model performance evaluation criterion. The result indicated that RBF arithmetic was superior to BP arithmetic in predicting software maintainability. 展开更多
关键词 unified modeling language(UML) class diagram software maintainability back propagation(bp) neural network radial basis function(RBF) neural network
下载PDF
An Intelligent Otologic Drill
10
作者 SHEN Peng1,FENG Guo-dong2,CAO Tian-yang 3,GAO Zhi-qiang 2,LI Xi-sheng 3 1 Department of Otolaryngology,Chuiyangliu Hospital of Beijing 2 Department of Otolaryngology,Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing,China 3 School of Information & Engineering,University of Science and Technology Beijing,Beijing,China 《Journal of Otology》 2010年第2期104-110,共7页
Objective To test a modified otologic drill under different drilling conditions for its ability to identify drilling faults and stop drilling.Methods Based on force analysis and previous works,an otologic drill was mo... Objective To test a modified otologic drill under different drilling conditions for its ability to identify drilling faults and stop drilling.Methods Based on force analysis and previous works,an otologic drill was modified and equipped with three sensors.Under various conditions,the drill was used to simulate three drilling faults and normal drilling,and signals from the drill were analyzed to extract the characteristic signal.A multi-sensor information fusion system and a stop program were designed to recognize drilling faults and stop drilling.Results Signals from each sensor changed consistently in response to drilling condition changes,with high repeatability and regularity.The average identification rate was 72.625%,68.575%,70.5% and 81.3% respectively for the three simulated drilling faults and normal drilling.The stop program stopped drilling in 0.2~ 0.3 seconds when a drilling faults was detected.Conclusions This study shows that the forces acting on the drill bit change predictably in the three simulated drilling conditions;that using suitable BP neural networks,the drilling faults can be reliably identified,and that a stop program based upon characteristic signal recognition can stop drilling quickly upon detecting drilling faults.This lays a foundation for development of a system capable of predicting drilling faults and automatic drill control.Further studies are being undertaken for practical application of such a system. 展开更多
关键词 DRILL otologic surgery FORCE SENSOR back propagation(bp) neural network
下载PDF
Estimation and Prediction of Gas Chromatography Retention Indices of Hydrocarbons in Straight-run Gasoline by Using Artificial Neural Network and Structural Coding Method
11
作者 YIN Chun sheng GUO Wei min +2 位作者 LIU Wei ZHAO Wei PAN Zhong xiao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2001年第1期31-40,共10页
The molecular structures of hydrocarbons in straight run gasoline were numerically coded. The nonlinear quantitative relationship(QSRR) between gas chromatography(GC) retention indices of the hydrocarbons and their m... The molecular structures of hydrocarbons in straight run gasoline were numerically coded. The nonlinear quantitative relationship(QSRR) between gas chromatography(GC) retention indices of the hydrocarbons and their molecular structures were established by using an error back propagation(BP) algorithm. The GC retention indices of 150 hydrocarbons were then predicted by removing 15 compounds(as a test set) and using the 135 remained molecules as a calibration set. Through this procedure, all the compounds in the whole data set were then predicted in groups of 15 compounds. The results obtained by BP with the correlation coefficient and the standard deviation 0 993 4 and 16 54, are satisfied. 展开更多
关键词 Structural encoding GC retention index Neural network Error back propagation(bp)
下载PDF
基于主成分分析与人工神经网络的风电功率预测 被引量:133
12
作者 周松林 茆美琴 苏建徽 《电网技术》 EI CSCD 北大核心 2011年第9期128-132,共5页
提出了主成分分析与前馈神经网络相结合的风电功率预测模型。采用主成分分析法对原始多维输入变量进行预处理,选择输入变量的主成分作为神经网络的输入,既减少了输入变量的维数,又消除了各输入变量的相关性,从而简化了网络的结构,提高... 提出了主成分分析与前馈神经网络相结合的风电功率预测模型。采用主成分分析法对原始多维输入变量进行预处理,选择输入变量的主成分作为神经网络的输入,既减少了输入变量的维数,又消除了各输入变量的相关性,从而简化了网络的结构,提高了网络收敛性和稳定性。仿真结果表明,相对于一般神经网络模型,基于主成分分析的神经网络模型预测精度更高、泛化性能更好。 展开更多
关键词 风电功率预测 主成分分析 前馈神经网络 泛化性能
下载PDF
基于改进GA-BP神经网络的湿度传感器的温度补偿 被引量:122
13
作者 彭基伟 吕文华 +1 位作者 行鸿彦 武向娟 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第1期153-160,共8页
针对自动气象站采用的HMP45D型湿度传感器测量精度易受温度影响的问题,通过对遗传算法中的编码方式、适应度函数和参数进行改进研究,利用改进的遗传算法(genetic algorithm,GA)对反向传播(back propagation,BP)神经网络的初始权值阈值... 针对自动气象站采用的HMP45D型湿度传感器测量精度易受温度影响的问题,通过对遗传算法中的编码方式、适应度函数和参数进行改进研究,利用改进的遗传算法(genetic algorithm,GA)对反向传播(back propagation,BP)神经网络的初始权值阈值进行优化,在较大的范围进行搜索,采用反向传播算法在较小范围内进行微调,优化网络结构和参数,提出了用改进遗传算法优化BP神经网络的方法,根据在多温度条件下湿度传感器的实测数据,对利用此方法建立的模型进行温度补偿研究,并结合一般BP神经网络方法进行分析比较。实验结果表明,该方法具有全局寻优能力,补偿精度高,收敛速度快,能够有效补偿温度对湿度传感器的影响,大大提高了湿度传感器的测量准确度。 展开更多
关键词 遗传算法 bp神经网络 湿度传感器 GA—bp网络 温度补偿
下载PDF
电阻率二维神经网络反演 被引量:72
14
作者 徐海浪 吴小平 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2006年第2期584-589,共6页
由于非线性特性地球物理反演一直以来都是一个比较困难的问题.近十年来,非线性反演方法如人工神经网络、遗传算法在地球物理数据解释中得到越来越多的应用,但目前基本仍限于一维反演问题.对于二维反问题,反演参数较多,神经网络反演运用... 由于非线性特性地球物理反演一直以来都是一个比较困难的问题.近十年来,非线性反演方法如人工神经网络、遗传算法在地球物理数据解释中得到越来越多的应用,但目前基本仍限于一维反演问题.对于二维反问题,反演参数较多,神经网络反演运用较少.本文利用BP神经网络优化方法,实现了电阻率二维非线性反演.与传统线性化的迭代反演比较,神经网络反演能够克服传统方法的不足、获得更好的反演结果. 展开更多
关键词 电阻率 二维反演 反向传播网络
下载PDF
基于PCA-BP神经网络的煤与瓦斯突出预测研究 被引量:73
15
作者 朱志洁 张宏伟 +1 位作者 韩军 宋卫华 《中国安全科学学报》 CAS CSCD 北大核心 2013年第4期45-50,共6页
为提高煤与瓦斯突出预测的效率和准确率,将主成分分析(PCA)法与神经网络相结合,对煤与瓦斯突出进行预测。以平顶山八矿为研究对象,基于地质动力区划方法,搜集影响煤与瓦斯突出的因素的相关数据。通过PCA法提取影响因素的主成分,选取贡... 为提高煤与瓦斯突出预测的效率和准确率,将主成分分析(PCA)法与神经网络相结合,对煤与瓦斯突出进行预测。以平顶山八矿为研究对象,基于地质动力区划方法,搜集影响煤与瓦斯突出的因素的相关数据。通过PCA法提取影响因素的主成分,选取贡献率大于80%的3个主成分,代替原有的9个影响因素,将其作为反向传播(BP)神经网络的3个输入参数。将突出强度划分为4个等级,建立PCA-BP煤与瓦斯突出预测模型。选取典型的突出样本对PCA-BP神经网络进行训练,用检验样本检验训练好的网络,结果表明预测符合实际情况。 展开更多
关键词 煤与瓦斯突出 地质动力区划 主成分分析(PCA) 反向传播(bp)神经网络 仿真预测
下载PDF
基于卷积神经网络的SAR图像目标识别研究. 被引量:72
16
作者 田壮壮 占荣辉 +1 位作者 胡杰民 张军 《雷达学报(中英文)》 CSCD 2016年第3期320-325,共6页
针对合成孔径雷达(Synthetic Aperture Radar,SAR)的图像目标识别应用,该文提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的SAR图像目标识别方法。首先通过在误差代价函数中引入类别可分性度量,提高了卷积神经网络的... 针对合成孔径雷达(Synthetic Aperture Radar,SAR)的图像目标识别应用,该文提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的SAR图像目标识别方法。首先通过在误差代价函数中引入类别可分性度量,提高了卷积神经网络的类别区分能力;然后利用改进后的卷积神经网络对SAR图像进行特征提取;最后利用支持向量机(Support Vector Machine,SVM)对特征进行分类。使用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)SAR图像数据进行实验,识别结果证明了所提方法的有效性。 展开更多
关键词 合成孔径雷达 自动目标识别 卷积神经网络 支持向量机 bp算法
下载PDF
遗传算法优化BP神经网络的混沌时间序列预测 被引量:70
17
作者 李松 罗勇 张铭锐 《计算机工程与应用》 CSCD 北大核心 2011年第29期52-55,共4页
为提高BP神经网络预测模型对混沌时间序列的预测精度,将改进的遗传算法和BP神经网络结合,提出了一种基于改进遗传算法优化BP神经网络的混沌时间序列预测方法。利用改进的遗传算法优化BP神经网络的权值和阈值,训练BP神经网络预测模型求... 为提高BP神经网络预测模型对混沌时间序列的预测精度,将改进的遗传算法和BP神经网络结合,提出了一种基于改进遗传算法优化BP神经网络的混沌时间序列预测方法。利用改进的遗传算法优化BP神经网络的权值和阈值,训练BP神经网络预测模型求得最优解。将该模型应用到几个典型的非线性系统进行预测仿真,验证了该算法的有效性,与BP神经网络预测模型的预测结果进行了比较,仿真结果表明该方法对混沌时间序列具有更好的非线性拟合能力和更高的预测精度。 展开更多
关键词 混沌理论 预测 反向传播(bp)神经网络 遗传算法
下载PDF
基于遗传算法的BP神经网络技术的应用 被引量:46
18
作者 潘昊 王晓勇 +1 位作者 陈琼 黄少銮 《计算机应用》 CSCD 北大核心 2005年第12期2777-2779,共3页
针对BP网络的不足,提出了基于遗传算法的神经网络技术。将两者有机的融合在一起,充分利用了GA算法的全局搜索能力和BP算法的局部搜索能力,加快了收敛速度,提高了收敛精度,将其应用于高速公路动态称重系统的神经网络控制器的训练中,取得... 针对BP网络的不足,提出了基于遗传算法的神经网络技术。将两者有机的融合在一起,充分利用了GA算法的全局搜索能力和BP算法的局部搜索能力,加快了收敛速度,提高了收敛精度,将其应用于高速公路动态称重系统的神经网络控制器的训练中,取得了较好的效果。 展开更多
关键词 遗传算法 bp网络 神经网络 GA-bp网络
下载PDF
中国经济发展水平区域差异的人工神经网络判定 被引量:44
19
作者 许月卿 李双成 《资源科学》 CSSCI CSCD 北大核心 2005年第1期69-73,共5页
本文在对目前经济发展水平度量方法进行分析的基础上,运用人工神经网络(ANN)的理论和方法,构建了ANN模型分析中应用最为广泛的BP网络,并对2000年中国31个省、市(自治区)的经济发展水平进行了评价。网络运行结果表明,中国经济发展水平的... 本文在对目前经济发展水平度量方法进行分析的基础上,运用人工神经网络(ANN)的理论和方法,构建了ANN模型分析中应用最为广泛的BP网络,并对2000年中国31个省、市(自治区)的经济发展水平进行了评价。网络运行结果表明,中国经济发展水平的区域差异显著,评价结果与专家的判断基本近似。根据评价结果,采用最短聚类分析法,将中国区域经济发展水平分为5级,经济发展水平较高的省(市、区)主要分布在东部沿海地区,经济发展水平较低及落后的省(市、区)主要分布在中部和西部地区,中国经济发展水平的区域差异主要表现为东部和中西部及沿海和内地的差异。可见,人工神经网络用于评价经济发展水平简便、实用,且避免了人工确定指标权重的主观性,是一条具有发展和应用前景的途径。 展开更多
关键词 中国经济发展 区域经济发展水平 区域差异 自治区 东部沿海地区 中西部 度量方法 ANN模型 评价结果 判定
下载PDF
三种森林生物量估测模型的比较分析 被引量:44
20
作者 范文义 张海玉 +2 位作者 于颖 毛学刚 杨金明 《植物生态学报》 CAS CSCD 北大核心 2011年第4期402-410,共9页
森林生物量的定量估算为全球碳储量、碳循环研究提供了重要的参考依据。该研究采用黑龙江长白山地区的TM影像和133块森林资源一类清查样地的数据,选取地学参数、遥感反演参数等71个自变量分别构建多元逐步回归模型、传统BP(back propaga... 森林生物量的定量估算为全球碳储量、碳循环研究提供了重要的参考依据。该研究采用黑龙江长白山地区的TM影像和133块森林资源一类清查样地的数据,选取地学参数、遥感反演参数等71个自变量分别构建多元逐步回归模型、传统BP(back propagation)神经网络模型和基于高斯误差函数的BP神经网络改进模型(Gaussian error function,Erf-BP),进而估算该地区的森林生物量,并进行比较分析。结果表明,多元逐步回归模型估测的森林生物量预测精度为75%,均方根误差为26.87t·m-2;传统BP神经网络模型估测森林生物量的预测精度为80.92%,均方根误差为21.44t·m-2;Erf-BP估测森林生物量的预测精度为82.22%,均方根误差为20.83t·m-2。可见,改进后的Erf-BP能更好地模拟生物量与各个因子之间的关系,估算精度更高。 展开更多
关键词 生物量 bp神经网络模型 基于高斯误差函数的bp神经网络改进模型 多元逐步回归
原文传递
上一页 1 2 44 下一页 到第
使用帮助 返回顶部