The Danjiangkou reservoir was selected to provide the source water for the middle routes of the South to North Water Transfer Project, which has provoked many environmental concerns. To date, investigations of water c...The Danjiangkou reservoir was selected to provide the source water for the middle routes of the South to North Water Transfer Project, which has provoked many environmental concerns. To date, investigations of water contamination of the source water of the Danjiangkou reservoir with organic micro-pollutants have been limited. This study was conducted to identify and rank organic contaminants that pose risks in the Danjiangkou reservoir. To this end, the Chemical Hazard Evaluation and Manage- ment Strategies (CHEMS-1) approach was adapted to integrate the deconvolution technology of qualitative identifying contaminants for site-specific environmental matrices. The samples were screened for the presence of 1093 contaminants using deconvolution technologies and the hazard values of the identified contaminants were calculated using the adapted CHEMS-1 approach accord- ing to their hazardous properties and occurrence in source water. The results showed that 46 contaminants from 1093 targets were present in Danjiangkou water, 23 of which appeared at frequencies higher than 50%, and 15 of which were identified as priorities. Over half (53%) of the high- ranked contaminants were polycyclic aromatic hydrocar- bons (PAHs), with chrysene ranked highest on the list. Health risk assessment of the top-ranked PAHs was conducted and revealed that cancer risks of PAHs detected in the source water of Danjiangkou to different populations ranged from 10-7 to 104, indicating a low cancer risk to consumers. The results of this study indicated that the adapted CHEMS-1 approach was feasible for site-specific screening of organic contaminants to identify and rank potential priority pollutants.展开更多
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ...The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential.展开更多
The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecologi...The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecological operation needs to be carried out in order to ensure ecological water use of downstream zone.The key technological support is the estimation and integrated calculation of ecological water demand.The connotation of the integrated calculation on ecological water demand lies on that the ecological water demand of different ecosystems is integrated to meet the requirements of water allocation and operation on watershed scale in terms of hydrological cycle.Considering the practical requirement of ecological operation of reservoir(s),this study proposed an integrated calculation approach of ecological water demand according to the ecological water demand in various ecosystems as well as the hydraulic connection among them;it established an integrated calculation model of regional ecological water demand by means of the distributed hydrological model,and studied the integrated calculation in Yalong River basin which is the source area of the west route of South-North Water Transfer Project as an example.The results indicated that the integrated calculation model more effectively combined the ecological water demand and hydraulic connection of ecosystems in time and space,compared with the lumped water balance analysis,since the former conquered the defect of insufficient ecological water source and supplement on multiple spatial and temporal scales,and met the demand of ecological operation of reservoir(s).展开更多
With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS pr...With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS project network,namely an Open-Source Software ECOsystem(OSSECO).Unfortunately,not all OS projects in the open-source ecosystem can be healthy and stable in the long term,and more projects will go from active to inactive and gradually die.In a tightly connected ecosystem,the death of one project can potentially cause the collapse of the entire ecosystem network.How can we effectively prevent such situations from happening?In this paper,we first identify the basic project characteristics that affect the survival of OS projects at both project and ecosystem levels through the proportional hazards model.Then,we utilize graph convolutional networks based on the ecosystem network to extract the ecosystem environment characteristics of OS projects.Finally,we fuse basic project characteristics and environmental project characteristics and construct a Hybrid Structured Prediction Model(HSPM)to predict the OS project survival state.The experimental results show that HSPM significantly improved compared to the traditional prediction model.Our work can substantially assist OS project managers in maintaining their projects’health.It can also provide an essential reference for developers when choosing the right open-source project for their production activities.展开更多
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 20977102 and 21007077), the Ministry of Water Resources' Special Funds for Scientific Research on Public Causes (No. 201201032) and the Environmental Protection National Commonweal Research Project (No. 200909040).
文摘The Danjiangkou reservoir was selected to provide the source water for the middle routes of the South to North Water Transfer Project, which has provoked many environmental concerns. To date, investigations of water contamination of the source water of the Danjiangkou reservoir with organic micro-pollutants have been limited. This study was conducted to identify and rank organic contaminants that pose risks in the Danjiangkou reservoir. To this end, the Chemical Hazard Evaluation and Manage- ment Strategies (CHEMS-1) approach was adapted to integrate the deconvolution technology of qualitative identifying contaminants for site-specific environmental matrices. The samples were screened for the presence of 1093 contaminants using deconvolution technologies and the hazard values of the identified contaminants were calculated using the adapted CHEMS-1 approach accord- ing to their hazardous properties and occurrence in source water. The results showed that 46 contaminants from 1093 targets were present in Danjiangkou water, 23 of which appeared at frequencies higher than 50%, and 15 of which were identified as priorities. Over half (53%) of the high- ranked contaminants were polycyclic aromatic hydrocar- bons (PAHs), with chrysene ranked highest on the list. Health risk assessment of the top-ranked PAHs was conducted and revealed that cancer risks of PAHs detected in the source water of Danjiangkou to different populations ranged from 10-7 to 104, indicating a low cancer risk to consumers. The results of this study indicated that the adapted CHEMS-1 approach was feasible for site-specific screening of organic contaminants to identify and rank potential priority pollutants.
基金funded by projects of the National Natural Science Foundation of China(91955204,42241202)the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK080301)a project entitled Tectonics,Sedimentation,Evolution,and Basic Petroleum Geology of the Qiangtang Basin(2021DJ0801)of the Forward-looking Basic Subjects of PetroChina’s 14th Five-Year Plan.
文摘The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51021066)the State Key Development Program for Basic Research of China (Grant No. 2010CB951102)
文摘The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecological operation needs to be carried out in order to ensure ecological water use of downstream zone.The key technological support is the estimation and integrated calculation of ecological water demand.The connotation of the integrated calculation on ecological water demand lies on that the ecological water demand of different ecosystems is integrated to meet the requirements of water allocation and operation on watershed scale in terms of hydrological cycle.Considering the practical requirement of ecological operation of reservoir(s),this study proposed an integrated calculation approach of ecological water demand according to the ecological water demand in various ecosystems as well as the hydraulic connection among them;it established an integrated calculation model of regional ecological water demand by means of the distributed hydrological model,and studied the integrated calculation in Yalong River basin which is the source area of the west route of South-North Water Transfer Project as an example.The results indicated that the integrated calculation model more effectively combined the ecological water demand and hydraulic connection of ecosystems in time and space,compared with the lumped water balance analysis,since the former conquered the defect of insufficient ecological water source and supplement on multiple spatial and temporal scales,and met the demand of ecological operation of reservoir(s).
基金This work was supported by the National Social Science Foundation(NSSF)Research on intelligent recommendation of multi-modal resources for children’s graded reading in smart library(22BTQ033)the Science and Technology Research and Development Program Project of China railway group limited(Project No.2021-Special-08).
文摘With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS project network,namely an Open-Source Software ECOsystem(OSSECO).Unfortunately,not all OS projects in the open-source ecosystem can be healthy and stable in the long term,and more projects will go from active to inactive and gradually die.In a tightly connected ecosystem,the death of one project can potentially cause the collapse of the entire ecosystem network.How can we effectively prevent such situations from happening?In this paper,we first identify the basic project characteristics that affect the survival of OS projects at both project and ecosystem levels through the proportional hazards model.Then,we utilize graph convolutional networks based on the ecosystem network to extract the ecosystem environment characteristics of OS projects.Finally,we fuse basic project characteristics and environmental project characteristics and construct a Hybrid Structured Prediction Model(HSPM)to predict the OS project survival state.The experimental results show that HSPM significantly improved compared to the traditional prediction model.Our work can substantially assist OS project managers in maintaining their projects’health.It can also provide an essential reference for developers when choosing the right open-source project for their production activities.