Let p be a prime number,N be a positive integer such that gcd(N,p) = 1,q = pf where f is the multiplicative order of p modulo N.Let χ be a primitive multiplicative character of order N over finite field Fq.This paper...Let p be a prime number,N be a positive integer such that gcd(N,p) = 1,q = pf where f is the multiplicative order of p modulo N.Let χ be a primitive multiplicative character of order N over finite field Fq.This paper studies the problem of explicit evaluation of Gauss sums G(χ) in the "index 2 case"(i.e.[(Z/NZ):【p】] = 2).Firstly,the classification of the Gauss sums in the index 2 case is presented.Then,the explicit evaluation of Gauss sums G(χλ)(1 λ N-1) in the index 2 case with order N being general even integer(i.e.N = 2r·N0,where r,N0 are positive integers and N0 3 is odd) is obtained.Thus,combining with the researches before,the problem of explicit evaluation of Gauss sums in the index 2 case is completely solved.展开更多
The problem of evaluating an infinite series whose successive terms are reciprocal squares of the natural numbers was posed without a solution being offered in the middle of the seventeenth century. In the modern era,...The problem of evaluating an infinite series whose successive terms are reciprocal squares of the natural numbers was posed without a solution being offered in the middle of the seventeenth century. In the modern era, it is part of the theory of the Riemann zeta-function, specifically ζ (2). Jakob Bernoulli attempted to solve it by considering other more tractable series which were superficially similar and which he hoped could be algebraically manipulated to yield a solution to the difficult series. This approach was eventually unsuccessful, however, Bernoulli did produce an early monograph on summation of series. It remained for Bernoulli’s student and countryman Leonhard Euler to ultimately determine the sum to be . We characterize a class of series based on generalizing Bernoulli’s original work by adding two additional parameters to the summations. We also develop a recursion formula that allows summation of any member of the class.展开更多
In this paper, two-dimensional (2-D) correction scheme is proposed to improve the performance of conventional Min-Sum (MS) decoding of regular low density parity check codes. The adopted algorithm to obtain the correc...In this paper, two-dimensional (2-D) correction scheme is proposed to improve the performance of conventional Min-Sum (MS) decoding of regular low density parity check codes. The adopted algorithm to obtain the correction factors is simply based on estimating the mean square difference (MSD) between the transmitted codeword and the posteriori information of both bit and check node that produced at the MS decoder. Semi-practical tests using software-defined radio (SDR) and specific code simulations show that the proposed quasi-optimal algorithm provides a comparable error performance as Sum-Product (SP) decoding while requiring less complexity.展开更多
Using a fixed-point method, we establish the generalized Hyers-Ulam stability of a general mixed additive-cubic equation: f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in Banach mod...Using a fixed-point method, we establish the generalized Hyers-Ulam stability of a general mixed additive-cubic equation: f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in Banach modules over a unital Banach algebra.展开更多
基金supported by National Natural Science Foundation of China (Grant No.10990011)the PhD Programs Foundation of Ministry of Education of China (Grant No. 20090002120013)
文摘Let p be a prime number,N be a positive integer such that gcd(N,p) = 1,q = pf where f is the multiplicative order of p modulo N.Let χ be a primitive multiplicative character of order N over finite field Fq.This paper studies the problem of explicit evaluation of Gauss sums G(χ) in the "index 2 case"(i.e.[(Z/NZ):【p】] = 2).Firstly,the classification of the Gauss sums in the index 2 case is presented.Then,the explicit evaluation of Gauss sums G(χλ)(1 λ N-1) in the index 2 case with order N being general even integer(i.e.N = 2r·N0,where r,N0 are positive integers and N0 3 is odd) is obtained.Thus,combining with the researches before,the problem of explicit evaluation of Gauss sums in the index 2 case is completely solved.
文摘The problem of evaluating an infinite series whose successive terms are reciprocal squares of the natural numbers was posed without a solution being offered in the middle of the seventeenth century. In the modern era, it is part of the theory of the Riemann zeta-function, specifically ζ (2). Jakob Bernoulli attempted to solve it by considering other more tractable series which were superficially similar and which he hoped could be algebraically manipulated to yield a solution to the difficult series. This approach was eventually unsuccessful, however, Bernoulli did produce an early monograph on summation of series. It remained for Bernoulli’s student and countryman Leonhard Euler to ultimately determine the sum to be . We characterize a class of series based on generalizing Bernoulli’s original work by adding two additional parameters to the summations. We also develop a recursion formula that allows summation of any member of the class.
文摘In this paper, two-dimensional (2-D) correction scheme is proposed to improve the performance of conventional Min-Sum (MS) decoding of regular low density parity check codes. The adopted algorithm to obtain the correction factors is simply based on estimating the mean square difference (MSD) between the transmitted codeword and the posteriori information of both bit and check node that produced at the MS decoder. Semi-practical tests using software-defined radio (SDR) and specific code simulations show that the proposed quasi-optimal algorithm provides a comparable error performance as Sum-Product (SP) decoding while requiring less complexity.
基金supported by the National Natural Science Foundation of China (10671013,60972089,11171022)
文摘Using a fixed-point method, we establish the generalized Hyers-Ulam stability of a general mixed additive-cubic equation: f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in Banach modules over a unital Banach algebra.