The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock insta...The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock instability precursors and principal stress direction through wave velocity in rock acoustic emission(AE)experiments.Results show that the wave velocity variation exhibits obvious anisotropic characteristics in 0%–20%and 60%–90%of peak strength due to the differences of stress-induced microcrack types.The amplitude of wave velocity variation is related to the azimuth and position of wave propagation path,which indicates that the principal stress direction can be identified by the anisotropic characteristics of wave velocity variations.Furthermore,the experiments also demonstrate that the AE event rate and wave velocity show quiet and stable variations in the elastic stage of rock samples,while they present a trend of active and unstable variations in the plastic stage.It implies that both the AE event rate and wave velocity are effective monitoring parameters for rock instability.The anisotropic characteristics of the wave velocity variation and AE event rate are beneficial complements for identifying the rock instability precursors and determining the principal stress direction,which provides a new analysis method for stability monitoring in practical rock engineering.展开更多
Preliminary results on the emission sources of atmospheric phosphine and the types of its precursors in the environment are described. Sunlight plays a more important role than oxygen in its degradation. The vertical ...Preliminary results on the emission sources of atmospheric phosphine and the types of its precursors in the environment are described. Sunlight plays a more important role than oxygen in its degradation. The vertical profile of phosphine levels in ambient air has been measured. Laboratory simulation of phosphine formation under anaerobic conditions shows that addition of chicken manure, bone powder, or lecithin leads to an increment in phosphine emission. Phosphine can also be adsorbed to soil matrix and thus can survive in soil and sediment. Adsorption and light degradation explain the low ambient levels of phosphine.展开更多
Excellent magnetic properties in ferrites are required for high-frequency applications and for wastewater treatment. Thus, the present study shows the comparison of magnetic and structural properties of Nd and Sm subs...Excellent magnetic properties in ferrites are required for high-frequency applications and for wastewater treatment. Thus, the present study shows the comparison of magnetic and structural properties of Nd and Sm substituted Ni-Zn-Bi ferrites with the series Ni_(0.5)Zn_(0.5)Bi_(0.04)Nd_(x)Fe_(1.96-x)O_4(with step size 0.002)and Ni_(0.5)Zn_(0.5)Bi_(0.04)Sm_(x)Fe_(1.96-x)O_4(with step size 0.02) prepared using citrate precursor method. The impact of the substitution of rare earth ions(Nd and Sm) on magnetic properties of the synthesized samples is observed using a vibrating sample magnetometer(VSM). The saturation magnetization values enhance considerably from 52 to 58 emu/g for Nd^(3+)ions and 39 to 57 emu/g for Sm^(3+) ions, thus, making these materials magnetically hard. Further, the higher value of coercivity is also observed ranging from133 to 167 Oe for Nd^(3+)ions and 81 to 155 Oe for Sm^(3+) ions. The shape of hysteresis loops indicates a super paramagnetic and ferromagnetic behavior in the obtained samples. The squareness ratio value is<0.5, suggesting the uniaxial anisotropy of particles and hence, these ferrites are suitable for microwaveabsorbing and in permanent magnetic materials. The X-ray diffraction(XRD) pattern shows the formation of pure cubic crystallites, where, lattice parameters range from 0.840 to 0.839 nm and from 0.838to 0.839 nm for Nd^(3+)and Sm^(3+) ions substitution, respectively. The crystallite size ranges between 28.63to 29.89 nm and 18.33 to 26.23 nm, for substitution of Nd^(3+)and Sm^(3+) ions, respectively. Field emission scanning electron microscopy(FESEM) shows the formation of homogeneous grains, whereas, energy dispersive spectrometer(EDS) counts describe the purity of the samples. The Sm concentration x = 0.10has the maximum surface area with value of 42.6 m^(2)/g which proves to be having good data storage application due to high surface area. The zero-field cooled(ZFC) and field cooled(FC) data show that Nddoped Ni-Zn-Bi nanoferrites show superparamagnetic behaviour in the展开更多
采用热裂解聚合物前驱体法制备出了具有竹节结构的Si B C N纳米材料。扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明样品具有特殊的竹节状(叠杯状)形貌,电子散射能谱(EDX)证实了样品组分为Si、B、C、N。通过微区喇曼光谱仪研究了...采用热裂解聚合物前驱体法制备出了具有竹节结构的Si B C N纳米材料。扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明样品具有特殊的竹节状(叠杯状)形貌,电子散射能谱(EDX)证实了样品组分为Si、B、C、N。通过微区喇曼光谱仪研究了样品在488nm激光激发下从84~290K的变温发射特性,在490~800nm观察到位于580,620nm附近两个较强发射峰和740nm附近一个弱的发射峰。变温实验说明相应发射峰与材料禁带中形成的杂质能级有关。展开更多
The onset of dynamic friction plays an important role in the study of sliding interfaces.Previously,the sliding precursors in the form of crack-like defects have been detected in experiments and their strain fields ha...The onset of dynamic friction plays an important role in the study of sliding interfaces.Previously,the sliding precursors in the form of crack-like defects have been detected in experiments and their strain fields have been measured to be comparable to those of moving cracks.In the present work,we considered the dynamics of sliding precursors by solving the elastic problem due to a moving dislocation in a half-plane and the transient emission of a dislocation at the edge.It has been found that both the strain field of a moving dislocation and the spatiotemporal evolution agree well with those of a sliding precursor detected in experiments.The results may cast new light to the dynamics of sliding onset.展开更多
基金the financial support from the Fundamental Research Funds for the Central Universities(No.2282020cxqd055)the National Science Foundation for Excellent Young Scholars of China(No.51822407)+1 种基金the Natural Science Foundation of China(Nos.51774327 and 51504288)the Fundamental Research Funds for the Central Universities of Central South University(No.2021zzts0862)。
文摘The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock instability precursors and principal stress direction through wave velocity in rock acoustic emission(AE)experiments.Results show that the wave velocity variation exhibits obvious anisotropic characteristics in 0%–20%and 60%–90%of peak strength due to the differences of stress-induced microcrack types.The amplitude of wave velocity variation is related to the azimuth and position of wave propagation path,which indicates that the principal stress direction can be identified by the anisotropic characteristics of wave velocity variations.Furthermore,the experiments also demonstrate that the AE event rate and wave velocity show quiet and stable variations in the elastic stage of rock samples,while they present a trend of active and unstable variations in the plastic stage.It implies that both the AE event rate and wave velocity are effective monitoring parameters for rock instability.The anisotropic characteristics of the wave velocity variation and AE event rate are beneficial complements for identifying the rock instability precursors and determining the principal stress direction,which provides a new analysis method for stability monitoring in practical rock engineering.
基金We appreciate the supprt of Ms.Yizhong Wang and Mr.Wenzhi Song in incubation experiments and field survey.We thank Prof.G.Gassmann for providing GC accessories.This work was supported by the National Natural Science Foundation of China(Grant No.39790100)
文摘Preliminary results on the emission sources of atmospheric phosphine and the types of its precursors in the environment are described. Sunlight plays a more important role than oxygen in its degradation. The vertical profile of phosphine levels in ambient air has been measured. Laboratory simulation of phosphine formation under anaerobic conditions shows that addition of chicken manure, bone powder, or lecithin leads to an increment in phosphine emission. Phosphine can also be adsorbed to soil matrix and thus can survive in soil and sediment. Adsorption and light degradation explain the low ambient levels of phosphine.
基金Project supported by the National Key Research and Development Program of China(2022YFE0122700)in part by National Natural Science Foundation of China(62371241,62350610268,61971230)in part by the Jiangsu Distinguished Professor Program(R2022T48)。
文摘Excellent magnetic properties in ferrites are required for high-frequency applications and for wastewater treatment. Thus, the present study shows the comparison of magnetic and structural properties of Nd and Sm substituted Ni-Zn-Bi ferrites with the series Ni_(0.5)Zn_(0.5)Bi_(0.04)Nd_(x)Fe_(1.96-x)O_4(with step size 0.002)and Ni_(0.5)Zn_(0.5)Bi_(0.04)Sm_(x)Fe_(1.96-x)O_4(with step size 0.02) prepared using citrate precursor method. The impact of the substitution of rare earth ions(Nd and Sm) on magnetic properties of the synthesized samples is observed using a vibrating sample magnetometer(VSM). The saturation magnetization values enhance considerably from 52 to 58 emu/g for Nd^(3+)ions and 39 to 57 emu/g for Sm^(3+) ions, thus, making these materials magnetically hard. Further, the higher value of coercivity is also observed ranging from133 to 167 Oe for Nd^(3+)ions and 81 to 155 Oe for Sm^(3+) ions. The shape of hysteresis loops indicates a super paramagnetic and ferromagnetic behavior in the obtained samples. The squareness ratio value is<0.5, suggesting the uniaxial anisotropy of particles and hence, these ferrites are suitable for microwaveabsorbing and in permanent magnetic materials. The X-ray diffraction(XRD) pattern shows the formation of pure cubic crystallites, where, lattice parameters range from 0.840 to 0.839 nm and from 0.838to 0.839 nm for Nd^(3+)and Sm^(3+) ions substitution, respectively. The crystallite size ranges between 28.63to 29.89 nm and 18.33 to 26.23 nm, for substitution of Nd^(3+)and Sm^(3+) ions, respectively. Field emission scanning electron microscopy(FESEM) shows the formation of homogeneous grains, whereas, energy dispersive spectrometer(EDS) counts describe the purity of the samples. The Sm concentration x = 0.10has the maximum surface area with value of 42.6 m^(2)/g which proves to be having good data storage application due to high surface area. The zero-field cooled(ZFC) and field cooled(FC) data show that Nddoped Ni-Zn-Bi nanoferrites show superparamagnetic behaviour in the
文摘采用热裂解聚合物前驱体法制备出了具有竹节结构的Si B C N纳米材料。扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明样品具有特殊的竹节状(叠杯状)形貌,电子散射能谱(EDX)证实了样品组分为Si、B、C、N。通过微区喇曼光谱仪研究了样品在488nm激光激发下从84~290K的变温发射特性,在490~800nm观察到位于580,620nm附近两个较强发射峰和740nm附近一个弱的发射峰。变温实验说明相应发射峰与材料禁带中形成的杂质能级有关。
基金The authors are grateful for the support by the National Natural Science Foundation of China under Grant Nos.1177220,12021002 and 11572216.
文摘The onset of dynamic friction plays an important role in the study of sliding interfaces.Previously,the sliding precursors in the form of crack-like defects have been detected in experiments and their strain fields have been measured to be comparable to those of moving cracks.In the present work,we considered the dynamics of sliding precursors by solving the elastic problem due to a moving dislocation in a half-plane and the transient emission of a dislocation at the edge.It has been found that both the strain field of a moving dislocation and the spatiotemporal evolution agree well with those of a sliding precursor detected in experiments.The results may cast new light to the dynamics of sliding onset.