Additive manufacturing(AM)is gaining traction in the manufacturing industry for the fabrication of components with complex geometries using a variety of materials.Selective laser melting(SLM)is a common AM technique t...Additive manufacturing(AM)is gaining traction in the manufacturing industry for the fabrication of components with complex geometries using a variety of materials.Selective laser melting(SLM)is a common AM technique that is based on powder-bed fusion(PBF)to process metals;however,it is currently focused only on the fabrication of macroscale and mesoscale components.This paper reviews the state of the art of the SLM of metallic materials at the microscale level.In comparison with the direct writing techniques that are commonly used for micro AM,micro SLM is attractive due to a number of factors,including a faster cycle time,process simplicity,and material versatility.A comprehensive evaluation of various research works and commercial systems for the fabrication of microscale parts using SLM and selective laser sintering(SLS)is conducted.In addition to identifying existing issues with SLM at the microscale,which include powder recoating,laser optics,and powder particle size,this paper details potential future directions.A detailed review of existing recoating methods in powder-bed techniques is conducted,along with a description of emerging efforts to implement dry powder dispensing methods in the AM domain.A number of secondary finishing techniques for AM components are reviewed,with a focus on implementation for microscale features and integration with micro SLM systems.展开更多
Achieving not only high mechanical strengths but also high ductility is recently established using an additive manufacturing technique called selective laser melting. In the present study, stainless steel 304 L fully ...Achieving not only high mechanical strengths but also high ductility is recently established using an additive manufacturing technique called selective laser melting. In the present study, stainless steel 304 L fully dense samples were successfully printed using the 3 D systems – ProX 300 printing machine. The ductility and tensile yield strength were almost two and three times higher compared to those of ASTM cast's alloy. Honey comb like nano-cellular structure with different orientation was observed in the fine grains(~4μm) due to fast cooling rate. In addition, the formation of martensite phase in random grains is also a contributor to the strengths. Furthermore, negative residual stresses in the build and horizontal directions were detected and assisted further increase in the tensile strength. Fractography revealed the ductile feature of plastic deformation and the crack openings at unmelted particles or pores.展开更多
A super-fine compound powder, Ag/SnO_2+La_2O_3+ Bi_2O_3, has been obtainedusing the chemical coprecipitation method. And a new contact material, Ag/SnO_2+La_2O_3+Bi_2O_3, wasproduced by the powder metallurgy method. I...A super-fine compound powder, Ag/SnO_2+La_2O_3+ Bi_2O_3, has been obtainedusing the chemical coprecipitation method. And a new contact material, Ag/SnO_2+La_2O_3+Bi_2O_3, wasproduced by the powder metallurgy method. Its properties are as follows: the density is 9.75-9.93g/cm^3, the resistivity is 2.31-2.55 μΩ ·cm, the hardness is 880-985 MPa. Its mi-crostructureshows that the fine oxides have a uniform distribution in the silver matrix. The results ofmake-break capacity and temperature rise testing show that the new material has better ability ofanti-arc erosion and lower temperature rise than that of commonly used Ag/CdO.展开更多
Zn based metals have exhibited promising prospects as a structural material for biodegradable applications. Pure Zn porous scaffolds were produced by laser powder bed fusion(LPBF) based on data files of designing and ...Zn based metals have exhibited promising prospects as a structural material for biodegradable applications. Pure Zn porous scaffolds were produced by laser powder bed fusion(LPBF) based on data files of designing and CT scanning. Massive Zn evaporation during laser melting largely influenced the formation quality during LPBF of Zn metal. The metal vapor in processing chamber was blown off and suctioned out efficiently by an optimized gas circulation system. Numerical analysis was used to design and testify the performance of gas flow. The surface of scaffolds was covered with numerous particles in different sizes. Processing pores occurred near the outline contour of struts. The average grain size in width was8.5m, and the hardness was 43.8 HV. Chemical plus electrochemical polishing obtained uniform and smooth surface without processing pores, but the diameter of struts reduced to 250 αm from the design value 300 m. The poor surface quality and processing pores were resulted by the splashing particles included spatters and powders due to the recoil force of evaporation, and the horizontal movement of liquid metal due to overheating and wetting. The insufficient melting at the outline contour combined with good wetting of Zn liquid metal further increased the surface roughness and processing pores.展开更多
Although different types of powder feedstock are used for additive manufacturing via laser powder bed fusion(L-PBF),limited work has attempted to directly compare the microstructure and mechanical behavior of componen...Although different types of powder feedstock are used for additive manufacturing via laser powder bed fusion(L-PBF),limited work has attempted to directly compare the microstructure and mechanical behavior of components manufactured from those powder feedstock.This work investigated the microstructure,phase composition,melt pool morphology,and mechanical properties of a prealloyed Ti-35Nb alloy manufactured using L-PBF and compared these to their counterparts produced from elemental powder mixture.The samples manufactured from the powder mixture are composed of randomly distributed undissolved Nb in theα/βmatrix,resulting from the unstable melt pool during the melting of the powder mixture.By contrast,parts produced from prealloyed powder display a homogeneous microstructure withβandαphases,owing to the full melting of prealloyed powder,therefore,a more stable melt pool to achieve a homogeneous microstructure.The Ti-35Nb manufactured from prealloyed powder exhibits large tensile ductility(about 10 times that of the counterparts using mixed powder),attributed to the high homogeneity in microstructure and chemical composition,strong interface bonding,relatively low oxygen content,and the existence of a large amount ofβphase.This work sheds insights into understanding the effect of powder feedstock on the melt pool stability therefore the microstructure and mechanical behavior of the resultant parts.展开更多
Selective laser melting(SLM) was employed to fabricate Nb-37 Ti-13 Cr-2 Al-1 Si(at%)alloy, using pre-alloyed powders prepared by plasma rotating electrode processing(PREP). A series of single tracks and single l...Selective laser melting(SLM) was employed to fabricate Nb-37 Ti-13 Cr-2 Al-1 Si(at%)alloy, using pre-alloyed powders prepared by plasma rotating electrode processing(PREP). A series of single tracks and single layers under different processing parameters was manufactured to evaluate the processing feasibility by SLM, including laser power, scanning speed, and hatch distance.Results showed that continuous single tracks could be fabricated using proper laser powers and scanning velocities. Both the width of a single track and its penetration depth into a substrate increased with an increase of the linear laser beam energy density(LED), i.e., an increase of the laser power and a decrease of the scanning speed. Nb, Ti, Si, Cr, and Al elements distributed heterogeneously over the melt pool in the form of swirl-like patterns. An excess of the hatch distance was not able to interconnect neighboring tracks. Under improper processing parameters, a balling phenomenon occurred, but could be eliminated with an increased LED. This work testified the SLMprocessing feasibility of Nb-based alloy and promoted the application of SLM to the manufacture of niobium-based alloys.展开更多
The driving force for using powder metallurgy(PM)mostly relies on its near net-shape ability and cost-performance ratio.The automotive application is a main market of PM industry,requiring parts with competitive mecha...The driving force for using powder metallurgy(PM)mostly relies on its near net-shape ability and cost-performance ratio.The automotive application is a main market of PM industry,requiring parts with competitive mechanical or functional performance in a mass production scale.As the automobile technology transforms from traditional internal combustion engine vehicles to new energy vehicles,PM technology is undergoing significant changes in manufacturing and materials development.This review outlines the challenges and opportunities generated by the changes in the automotive technology for PM.Low-cost,high-performance and light-weight are critical aspects for future PM materials development.Therefore,the studies on PM lean-alloyed steel,aluminum alloys,and titanium alloy materials were reviewed.In addition,PM soft magnetic composite applied to new energy vehicles was discussed.Then new opportunities for advanced processing,such as metal injection molding(MIM)and additive manufacturing(AM),in automotive industry were stated.In general,the change in automotive industry raises sufficient development space for PM.While,emerging technologies require more preeminent PM materials.Iron-based parts are still the main PM products due to their mechanical performance and low cost.MIM will occupy the growing market of highly flexible and complex parts.AM opens a door for fast prototyping,great flexibility and customizing at low cost,driving weight and assembling reduction.展开更多
基金financial support from the Science and Engineering Research Council,Agency for Science,Technology and Research(A*STAR),Singapore(142 68 00088)
文摘Additive manufacturing(AM)is gaining traction in the manufacturing industry for the fabrication of components with complex geometries using a variety of materials.Selective laser melting(SLM)is a common AM technique that is based on powder-bed fusion(PBF)to process metals;however,it is currently focused only on the fabrication of macroscale and mesoscale components.This paper reviews the state of the art of the SLM of metallic materials at the microscale level.In comparison with the direct writing techniques that are commonly used for micro AM,micro SLM is attractive due to a number of factors,including a faster cycle time,process simplicity,and material versatility.A comprehensive evaluation of various research works and commercial systems for the fabrication of microscale parts using SLM and selective laser sintering(SLS)is conducted.In addition to identifying existing issues with SLM at the microscale,which include powder recoating,laser optics,and powder particle size,this paper details potential future directions.A detailed review of existing recoating methods in powder-bed techniques is conducted,along with a description of emerging efforts to implement dry powder dispensing methods in the AM domain.A number of secondary finishing techniques for AM components are reviewed,with a focus on implementation for microscale features and integration with micro SLM systems.
基金support from A*STAR Industrial Additive Manufacturing Facilities with the research grant number 142680088
文摘Achieving not only high mechanical strengths but also high ductility is recently established using an additive manufacturing technique called selective laser melting. In the present study, stainless steel 304 L fully dense samples were successfully printed using the 3 D systems – ProX 300 printing machine. The ductility and tensile yield strength were almost two and three times higher compared to those of ASTM cast's alloy. Honey comb like nano-cellular structure with different orientation was observed in the fine grains(~4μm) due to fast cooling rate. In addition, the formation of martensite phase in random grains is also a contributor to the strengths. Furthermore, negative residual stresses in the build and horizontal directions were detected and assisted further increase in the tensile strength. Fractography revealed the ductile feature of plastic deformation and the crack openings at unmelted particles or pores.
基金This project is financially supported by the Science Foundation of Hebei Province (No.502048)
文摘A super-fine compound powder, Ag/SnO_2+La_2O_3+ Bi_2O_3, has been obtainedusing the chemical coprecipitation method. And a new contact material, Ag/SnO_2+La_2O_3+Bi_2O_3, wasproduced by the powder metallurgy method. Its properties are as follows: the density is 9.75-9.93g/cm^3, the resistivity is 2.31-2.55 μΩ ·cm, the hardness is 880-985 MPa. Its mi-crostructureshows that the fine oxides have a uniform distribution in the silver matrix. The results ofmake-break capacity and temperature rise testing show that the new material has better ability ofanti-arc erosion and lower temperature rise than that of commonly used Ag/CdO.
基金supported by National Natural Science Foundation of China (51875310)National Key R&D Program of China (2017YFB1103300)
文摘Zn based metals have exhibited promising prospects as a structural material for biodegradable applications. Pure Zn porous scaffolds were produced by laser powder bed fusion(LPBF) based on data files of designing and CT scanning. Massive Zn evaporation during laser melting largely influenced the formation quality during LPBF of Zn metal. The metal vapor in processing chamber was blown off and suctioned out efficiently by an optimized gas circulation system. Numerical analysis was used to design and testify the performance of gas flow. The surface of scaffolds was covered with numerous particles in different sizes. Processing pores occurred near the outline contour of struts. The average grain size in width was8.5m, and the hardness was 43.8 HV. Chemical plus electrochemical polishing obtained uniform and smooth surface without processing pores, but the diameter of struts reduced to 250 αm from the design value 300 m. The poor surface quality and processing pores were resulted by the splashing particles included spatters and powders due to the recoil force of evaporation, and the horizontal movement of liquid metal due to overheating and wetting. The insufficient melting at the outline contour combined with good wetting of Zn liquid metal further increased the surface roughness and processing pores.
基金the support of the Australian Government Research Training Program Scholarship and Forrest Research Foundation Ph D scholarshipthe fnancial support provided by the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials(No.2021GXYSOF03)and the facilitiesthe scientifc and technical assistance of the Australian Microscopy&Microanalysis Research Facility at the Centre for Microscopy,Characterisation&Analysis,The University of Western Australia,a facility funded by the University,State and Commonwealth Governments。
文摘Although different types of powder feedstock are used for additive manufacturing via laser powder bed fusion(L-PBF),limited work has attempted to directly compare the microstructure and mechanical behavior of components manufactured from those powder feedstock.This work investigated the microstructure,phase composition,melt pool morphology,and mechanical properties of a prealloyed Ti-35Nb alloy manufactured using L-PBF and compared these to their counterparts produced from elemental powder mixture.The samples manufactured from the powder mixture are composed of randomly distributed undissolved Nb in theα/βmatrix,resulting from the unstable melt pool during the melting of the powder mixture.By contrast,parts produced from prealloyed powder display a homogeneous microstructure withβandαphases,owing to the full melting of prealloyed powder,therefore,a more stable melt pool to achieve a homogeneous microstructure.The Ti-35Nb manufactured from prealloyed powder exhibits large tensile ductility(about 10 times that of the counterparts using mixed powder),attributed to the high homogeneity in microstructure and chemical composition,strong interface bonding,relatively low oxygen content,and the existence of a large amount ofβphase.This work sheds insights into understanding the effect of powder feedstock on the melt pool stability therefore the microstructure and mechanical behavior of the resultant parts.
基金supported by the National Natural Science Foundation of China (Nos. 51471013 and 51571004)
文摘Selective laser melting(SLM) was employed to fabricate Nb-37 Ti-13 Cr-2 Al-1 Si(at%)alloy, using pre-alloyed powders prepared by plasma rotating electrode processing(PREP). A series of single tracks and single layers under different processing parameters was manufactured to evaluate the processing feasibility by SLM, including laser power, scanning speed, and hatch distance.Results showed that continuous single tracks could be fabricated using proper laser powers and scanning velocities. Both the width of a single track and its penetration depth into a substrate increased with an increase of the linear laser beam energy density(LED), i.e., an increase of the laser power and a decrease of the scanning speed. Nb, Ti, Si, Cr, and Al elements distributed heterogeneously over the melt pool in the form of swirl-like patterns. An excess of the hatch distance was not able to interconnect neighboring tracks. Under improper processing parameters, a balling phenomenon occurred, but could be eliminated with an increased LED. This work testified the SLMprocessing feasibility of Nb-based alloy and promoted the application of SLM to the manufacture of niobium-based alloys.
基金Project(51625404)supported by the National Science Fund for Distinguished Young Scholars,China。
文摘The driving force for using powder metallurgy(PM)mostly relies on its near net-shape ability and cost-performance ratio.The automotive application is a main market of PM industry,requiring parts with competitive mechanical or functional performance in a mass production scale.As the automobile technology transforms from traditional internal combustion engine vehicles to new energy vehicles,PM technology is undergoing significant changes in manufacturing and materials development.This review outlines the challenges and opportunities generated by the changes in the automotive technology for PM.Low-cost,high-performance and light-weight are critical aspects for future PM materials development.Therefore,the studies on PM lean-alloyed steel,aluminum alloys,and titanium alloy materials were reviewed.In addition,PM soft magnetic composite applied to new energy vehicles was discussed.Then new opportunities for advanced processing,such as metal injection molding(MIM)and additive manufacturing(AM),in automotive industry were stated.In general,the change in automotive industry raises sufficient development space for PM.While,emerging technologies require more preeminent PM materials.Iron-based parts are still the main PM products due to their mechanical performance and low cost.MIM will occupy the growing market of highly flexible and complex parts.AM opens a door for fast prototyping,great flexibility and customizing at low cost,driving weight and assembling reduction.