The onion fly, Delia antiqua, is a major underground agricultural pest that can enter pupal diapause in the summer and winter seasons. However, little is known about its molecular regulation due to the lack of genomic...The onion fly, Delia antiqua, is a major underground agricultural pest that can enter pupal diapause in the summer and winter seasons. However, little is known about its molecular regulation due to the lack of genomic resources. To gain insight into the possible mechanism of summer diapause (SD), high-throughput RNA-Seq data were generated from non-diapause (ND) and SD (initial, maintenance and quiescence phase) pupae. Three pair-wise comparisons were performed and identified, 1380, 1471 and 435, and were significantly regulated transcripts. Further analysis revealed that the enrichment of several functional terms related to juvenile hormone regulation, cell cycle, carbon hydrate and lipid metabolism, innate immune and stress responses, various signalling transductions, ubiquitin-dependent proteosome, and variation in cuticular and cytoskeleton components were found between ND and SD and between different phases of SD. Global characterization oftranscriptome profiling between SD and ND contributes to the in-depth elucidation of the molecular mechanism of SD. Our results also offer insights into the evolution of insect diapause and support the importance of using the onion fly as a model to compare the molecular regulation events of summer and winter diapauses.展开更多
Using National Centers for Environmental Prediction/National Centre for Atmospheric Research(NCEP/NCAR) reanalysis data and monthly Hadley Center sea surface temperature(SST) data,and selecting a representative Ea...Using National Centers for Environmental Prediction/National Centre for Atmospheric Research(NCEP/NCAR) reanalysis data and monthly Hadley Center sea surface temperature(SST) data,and selecting a representative East Asian winter monsoon(EAWM) index,this study investigated the relationship between EAWM and East Asian summer monsoon(EASM) using statistical analyses and numerical simulations.Some possible mechanisms regarding this relationship were also explored.Results indicate a close relationship between EAWM and EASM:a strong EAWM led to a strong EASM in the following summer,and a weak EAWM led to a weak EASM in the following summer.Anomalous EAWM has persistent impacts on the variation of SST in the tropical Indian Ocean and the South China Sea,and on the equatorial atmospheric thermal anomalies at both lower and upper levels.Through these impacts,the EAWM influences the land-sea thermal contrast in summer and the low-level atmospheric divergence and convergence over the Indo-Pacific region.It further affects the meridional monsoon circulation and other features of the EASM.Numerical simulations support the results of diagnostic analysis.The study provides useful information for predicting the EASM by analyzing the variations of preceding EAWM and tropical SST.展开更多
The NCEP/NCAR reanalysis, CMAP rainfall and Hadley Centre sea surface temperature(SST) datasets are used to investigate the relationship between the seasonal transition of East Asian monsoon and Asian-Pacific thermal ...The NCEP/NCAR reanalysis, CMAP rainfall and Hadley Centre sea surface temperature(SST) datasets are used to investigate the relationship between the seasonal transition of East Asian monsoon and Asian-Pacific thermal contrast, together with the possible causes. Based on the 250 h Pa air temperature over two selected key areas, the Asian-Pacific thermal difference(APTD) index is calculated. Results show that the APTD index is highly consistent with the Asian-Pacific Oscillation(APO) index defined by Zhao et al., in terms of different key areas in different seasons. Moreover, the time point of the seasonal transition of the Asian-Pacific thermal contrast can be well determined by the APTD index, indicative of seasonal variation in East Asian atmospheric circulation from winter to summer. The transition characteristic of the circulation can be summarized as follows. The continental cold high at lower tropospheric level moves eastward to the East China Sea and decreases rapidly in intensity, while the low-level northerlies turn to southerlies. At middle tropospheric level, the East Asia major trough is reduced and moves eastward. Furthermore, the subtropical high strengthens and appears near Philippines. The South Asia high shifts from the east of Philippines to the west of Indochina Peninsula, and the prevailing southerlies change into northerlies in upper troposphere. Meanwhile,both the westerly and easterly jets both jump to the north. The seasonal transition of atmospheric circulation is closely related to the thermal contrast, and the possible mechanism can be concluded as follows. Under the background of the APTD seasonal transition, the southerly wind appears firstly at lower troposphere, which triggers the ascending motion via changing vertical shear of meridional winds. The resultant latent heating accelerates the transition of heating pattern from winter to summer. The summer heating pattern can further promote the adjustment of circulation, which favors the formation and strengthening of the low-level sout展开更多
With the specified basic flow in the Northern Hemisphere winter, a study is made of the structure characteristics and mechanism of the principal mode of atmospheric low-frequency variability in terms of a linear baro... With the specified basic flow in the Northern Hemisphere winter, a study is made of the structure characteristics and mechanism of the principal mode of atmospheric low-frequency variability in terms of a linear barotropic model. Statistical and dynamical analyses of the model results indicate that the mode and the related dominant-forcing excitation zone are featured by evident spatial distribution and that the mechanism responsible for the mode bears fetation to the zonal asymmetry of the basic flow and the associated barotropic energy conversion.展开更多
基金Acknowledgments This work was supported by Par-Eu Scholars Program, and The National Natural Science Foundation of China (31372265), Coordinated Research Project of the International Atomic Energy Agency (18268/R0), and National Key Program of Science and Technology Foun- dation Work of China (2015FY210300). Conceived and designed the research: BC. Performed the experiments: FLS, DYE ZBH Analyzed the data and wrote the paper: YJH, BC, YJZ.
文摘The onion fly, Delia antiqua, is a major underground agricultural pest that can enter pupal diapause in the summer and winter seasons. However, little is known about its molecular regulation due to the lack of genomic resources. To gain insight into the possible mechanism of summer diapause (SD), high-throughput RNA-Seq data were generated from non-diapause (ND) and SD (initial, maintenance and quiescence phase) pupae. Three pair-wise comparisons were performed and identified, 1380, 1471 and 435, and were significantly regulated transcripts. Further analysis revealed that the enrichment of several functional terms related to juvenile hormone regulation, cell cycle, carbon hydrate and lipid metabolism, innate immune and stress responses, various signalling transductions, ubiquitin-dependent proteosome, and variation in cuticular and cytoskeleton components were found between ND and SD and between different phases of SD. Global characterization oftranscriptome profiling between SD and ND contributes to the in-depth elucidation of the molecular mechanism of SD. Our results also offer insights into the evolution of insect diapause and support the importance of using the onion fly as a model to compare the molecular regulation events of summer and winter diapauses.
基金the support from the National Natural Science Foundation of China (NSFC) under Grant Nos. 40675045 and 41065004NSFC-Yunnan Joint Foundation under Grant No. U0833602
文摘Using National Centers for Environmental Prediction/National Centre for Atmospheric Research(NCEP/NCAR) reanalysis data and monthly Hadley Center sea surface temperature(SST) data,and selecting a representative East Asian winter monsoon(EAWM) index,this study investigated the relationship between EAWM and East Asian summer monsoon(EASM) using statistical analyses and numerical simulations.Some possible mechanisms regarding this relationship were also explored.Results indicate a close relationship between EAWM and EASM:a strong EAWM led to a strong EASM in the following summer,and a weak EAWM led to a weak EASM in the following summer.Anomalous EAWM has persistent impacts on the variation of SST in the tropical Indian Ocean and the South China Sea,and on the equatorial atmospheric thermal anomalies at both lower and upper levels.Through these impacts,the EAWM influences the land-sea thermal contrast in summer and the low-level atmospheric divergence and convergence over the Indo-Pacific region.It further affects the meridional monsoon circulation and other features of the EASM.Numerical simulations support the results of diagnostic analysis.The study provides useful information for predicting the EASM by analyzing the variations of preceding EAWM and tropical SST.
基金National Basic Research and Development(973)Program of China(2013CB430202)Natural Science Foundation of China(41490643,41575077,41375089)+4 种基金China Special Fund for Meteorological Research in the Public Interest(GYHY201406018)"333"Project of Jiangsu Province(BRA2015290)Priority Academic Program Development(PAPD) of Jiangsu Higher Education InstitutionsProgram for Changjiang Scholars and Innovative Research Team in University(PCSIRT)"Qinglan"Project of Jiangsu Province for Cultivating Research Teams
文摘The NCEP/NCAR reanalysis, CMAP rainfall and Hadley Centre sea surface temperature(SST) datasets are used to investigate the relationship between the seasonal transition of East Asian monsoon and Asian-Pacific thermal contrast, together with the possible causes. Based on the 250 h Pa air temperature over two selected key areas, the Asian-Pacific thermal difference(APTD) index is calculated. Results show that the APTD index is highly consistent with the Asian-Pacific Oscillation(APO) index defined by Zhao et al., in terms of different key areas in different seasons. Moreover, the time point of the seasonal transition of the Asian-Pacific thermal contrast can be well determined by the APTD index, indicative of seasonal variation in East Asian atmospheric circulation from winter to summer. The transition characteristic of the circulation can be summarized as follows. The continental cold high at lower tropospheric level moves eastward to the East China Sea and decreases rapidly in intensity, while the low-level northerlies turn to southerlies. At middle tropospheric level, the East Asia major trough is reduced and moves eastward. Furthermore, the subtropical high strengthens and appears near Philippines. The South Asia high shifts from the east of Philippines to the west of Indochina Peninsula, and the prevailing southerlies change into northerlies in upper troposphere. Meanwhile,both the westerly and easterly jets both jump to the north. The seasonal transition of atmospheric circulation is closely related to the thermal contrast, and the possible mechanism can be concluded as follows. Under the background of the APTD seasonal transition, the southerly wind appears firstly at lower troposphere, which triggers the ascending motion via changing vertical shear of meridional winds. The resultant latent heating accelerates the transition of heating pattern from winter to summer. The summer heating pattern can further promote the adjustment of circulation, which favors the formation and strengthening of the low-level sout
基金This work is supported by the National Natural Science Foundation of China.
文摘 With the specified basic flow in the Northern Hemisphere winter, a study is made of the structure characteristics and mechanism of the principal mode of atmospheric low-frequency variability in terms of a linear barotropic model. Statistical and dynamical analyses of the model results indicate that the mode and the related dominant-forcing excitation zone are featured by evident spatial distribution and that the mechanism responsible for the mode bears fetation to the zonal asymmetry of the basic flow and the associated barotropic energy conversion.