期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Universal Inequalities for Lower Order Eigenvalues of Self-Adjoint Operators and the Poly-Laplacian 被引量:2
1
作者 He Jun SUN Ling Zhong ZENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第11期2209-2218,共10页
In this paper, we first establish an abstract inequality for lower order eigenvalues of a self-adjoint operator on a Hilbert space which generalizes and extends the recent results of Cheng et al. (Calc. Var. Partial ... In this paper, we first establish an abstract inequality for lower order eigenvalues of a self-adjoint operator on a Hilbert space which generalizes and extends the recent results of Cheng et al. (Calc. Var. Partial Differential Equations, 38, 409-416 (2010)). Then, making use of it, we obtain some universal inequalities for lower order eigenvalues of the biharmonic operator on manifolds admitting some speciM functions. Moreover, we derive a universal inequality for lower order eigenvalues of the poly-Laplacian with any order on the Euclidean space. 展开更多
关键词 EIGENVALUE self-adjoint operator biharmonic operator poly-laplacian Riemannian man- ifold
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部