期刊文献+

Universal Inequalities for Lower Order Eigenvalues of Self-Adjoint Operators and the Poly-Laplacian 被引量:2

Universal Inequalities for Lower Order Eigenvalues of Self-Adjoint Operators and the Poly-Laplacian
原文传递
导出
摘要 In this paper, we first establish an abstract inequality for lower order eigenvalues of a self-adjoint operator on a Hilbert space which generalizes and extends the recent results of Cheng et al. (Calc. Var. Partial Differential Equations, 38, 409-416 (2010)). Then, making use of it, we obtain some universal inequalities for lower order eigenvalues of the biharmonic operator on manifolds admitting some speciM functions. Moreover, we derive a universal inequality for lower order eigenvalues of the poly-Laplacian with any order on the Euclidean space. In this paper, we first establish an abstract inequality for lower order eigenvalues of a self-adjoint operator on a Hilbert space which generalizes and extends the recent results of Cheng et al. (Calc. Var. Partial Differential Equations, 38, 409-416 (2010)). Then, making use of it, we obtain some universal inequalities for lower order eigenvalues of the biharmonic operator on manifolds admitting some speciM functions. Moreover, we derive a universal inequality for lower order eigenvalues of the poly-Laplacian with any order on the Euclidean space.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第11期2209-2218,共10页 数学学报(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11001130)
关键词 EIGENVALUE self-adjoint operator biharmonic operator poly-Laplacian Riemannian man- ifold Eigenvalue, self-adjoint operator, biharmonic operator, poly-Laplacian, Riemannian man- ifold
  • 相关文献

参考文献1

共引文献34

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部