It is very significant to recover rare earths (REs) from wet-process phosphoric acid, in terms of extraction rate and selectivity, the current carrier di(2-ethlhexly) phosphate (D2EHPA) out there is still inferi...It is very significant to recover rare earths (REs) from wet-process phosphoric acid, in terms of extraction rate and selectivity, the current carrier di(2-ethlhexly) phosphate (D2EHPA) out there is still inferior. Based on this question, our team modified D2EHPA to synthesize new extractants. This paper presents a comprehensive study on the extraction of rare earth ions (RE3+) from phosphate leach solution using emulsion liquid membrane (ELM) in concentrated nitric acid medium. The ELM system is made up of (RO)2P(O)OPh-COOH as carrier, polyisocrotyl succinimide (T154) as surfactant, sulfonated kerosene as diluent, phosphoric acid (H3PO4) as stripping solution. Different chemical parameters such as type and concentration of carrier, surfactant, stripping solution, volume ratio of oil phase to internal phase, and volume ratio of emulsion ratio to external phase were analyzed. The extraction of RE^3+ was evaluated by the yield of extraction. In addition, the demulsification process was also investigated. The proposed method of ELM using (RO)2P(O)OPh-COOH as carrier can he expected to provide an efficient, simplify operation, and facilitated method for extractine RE^3+.展开更多
基金Project supported by National Natural Science Foundation of China(21461005)"Top Hundred Talents" Program of Science and Technology Development of Guizhou Province([2016]5658)
文摘It is very significant to recover rare earths (REs) from wet-process phosphoric acid, in terms of extraction rate and selectivity, the current carrier di(2-ethlhexly) phosphate (D2EHPA) out there is still inferior. Based on this question, our team modified D2EHPA to synthesize new extractants. This paper presents a comprehensive study on the extraction of rare earth ions (RE3+) from phosphate leach solution using emulsion liquid membrane (ELM) in concentrated nitric acid medium. The ELM system is made up of (RO)2P(O)OPh-COOH as carrier, polyisocrotyl succinimide (T154) as surfactant, sulfonated kerosene as diluent, phosphoric acid (H3PO4) as stripping solution. Different chemical parameters such as type and concentration of carrier, surfactant, stripping solution, volume ratio of oil phase to internal phase, and volume ratio of emulsion ratio to external phase were analyzed. The extraction of RE^3+ was evaluated by the yield of extraction. In addition, the demulsification process was also investigated. The proposed method of ELM using (RO)2P(O)OPh-COOH as carrier can he expected to provide an efficient, simplify operation, and facilitated method for extractine RE^3+.