We experimentally demonstrate multichannel wavelength multicasting for two nonreturn-to-zero quadrature phase-shift keying (NRZ-QPSK) channels based on four-wave mixing (FWM) in semiconductor optical amplifier (...We experimentally demonstrate multichannel wavelength multicasting for two nonreturn-to-zero quadrature phase-shift keying (NRZ-QPSK) channels based on four-wave mixing (FWM) in semiconductor optical amplifier (SOA). Through the interaction with the two pumps in SOA, the input two 25 Gb/s NRZ-QPSK channels are successfully simultaneously multicast to five and two new wavelengths, respectively. All the multicast channels are with a power penalty less than 2.5 dB at a bit error rate (BER) of 10^- 3. A characterization of the system performance using conversion efficiency and BER as figures-of-merit in terms of pump and signal powers is also presented. The results indicate that the pump and signal powers can be optimized to eliminate the introduced deleterious nonlinear components. The wavelengths of the two NRZ-QPSK channels and the two pumps need to be specified to avoid the crosstalk induced by high-order FWM.展开更多
We experimentally demonstrate one-to-five quadrature phase-shift keying(QPSK) wavelength multicasting based on four-wave mixing in bulk semiconductor optical amplifier. The input 25 Gb/s nonreturn-to-zero QPSK signa...We experimentally demonstrate one-to-five quadrature phase-shift keying(QPSK) wavelength multicasting based on four-wave mixing in bulk semiconductor optical amplifier. The input 25 Gb/s nonreturn-to-zero QPSK signal is successfully multicast to five new wavelengths with all information preserved. All the multicast channels are with a power penalty less than 1.1 d B at a bit error rate(BER) of 10-3. A characterization of the conversion efficiency in terms of pump and signal powers using the BER as figure of merit is also presented, the results indicate that the pump and signal powers should be optimized to eliminate the introduced deleterious nonlinear components.展开更多
Using differential detection, we perform polarization-multiplexing 160-Gb/s optical non-return-to-zero (NRZ) differential quadrature phase shift keying (DQPSK) signal transmission over 100-kin standard single mode...Using differential detection, we perform polarization-multiplexing 160-Gb/s optical non-return-to-zero (NRZ) differential quadrature phase shift keying (DQPSK) signal transmission over 100-kin standard single mode fiber at a bit error rate (BER) of less than 10^-9. The enabling technology includes clock recovery, fine dispersion compensation, and polarization tracking for de-multiplexing. Furthermore, a hybrid clock recovery scheme is proposed. The scheme is realized with ordinary devices using an optoelectrical modulator to down-convert the clock frequency and a phase-locked loop for filtering, which can provide an indication signal that simultaneously monitors residual dispersion and tracking polarization.展开更多
The encoding and decoding processes of traffic channel in digital trunking system are studied. On the basis of computer simulation, the BER (bit error ratio) with different RCPC decoding step is analyzed. As a result,...The encoding and decoding processes of traffic channel in digital trunking system are studied. On the basis of computer simulation, the BER (bit error ratio) with different RCPC decoding step is analyzed. As a result, the optimal RCPC decoding step is provided, which gives essential theoretical evidences for the implementation of digital trunking system.展开更多
基金supported by the National 863 Program of China(Nos.2012AA011302 and 2011AA010306)the National Natural Science Foundation of China(No.61372118)
文摘We experimentally demonstrate multichannel wavelength multicasting for two nonreturn-to-zero quadrature phase-shift keying (NRZ-QPSK) channels based on four-wave mixing (FWM) in semiconductor optical amplifier (SOA). Through the interaction with the two pumps in SOA, the input two 25 Gb/s NRZ-QPSK channels are successfully simultaneously multicast to five and two new wavelengths, respectively. All the multicast channels are with a power penalty less than 2.5 dB at a bit error rate (BER) of 10^- 3. A characterization of the system performance using conversion efficiency and BER as figures-of-merit in terms of pump and signal powers is also presented. The results indicate that the pump and signal powers can be optimized to eliminate the introduced deleterious nonlinear components. The wavelengths of the two NRZ-QPSK channels and the two pumps need to be specified to avoid the crosstalk induced by high-order FWM.
基金supported by the National 863 Program of China under Grant Nos.2012AA011302 and 2011AA010306
文摘We experimentally demonstrate one-to-five quadrature phase-shift keying(QPSK) wavelength multicasting based on four-wave mixing in bulk semiconductor optical amplifier. The input 25 Gb/s nonreturn-to-zero QPSK signal is successfully multicast to five new wavelengths with all information preserved. All the multicast channels are with a power penalty less than 1.1 d B at a bit error rate(BER) of 10-3. A characterization of the conversion efficiency in terms of pump and signal powers using the BER as figure of merit is also presented, the results indicate that the pump and signal powers should be optimized to eliminate the introduced deleterious nonlinear components.
基金supported in part by the National Natural Science Foundation of China(Nos. 60736003,61025004,and 61032005)the National "863" Program of China(Nos.2009AA01Z223 and 2009AA01Z253)
文摘Using differential detection, we perform polarization-multiplexing 160-Gb/s optical non-return-to-zero (NRZ) differential quadrature phase shift keying (DQPSK) signal transmission over 100-kin standard single mode fiber at a bit error rate (BER) of less than 10^-9. The enabling technology includes clock recovery, fine dispersion compensation, and polarization tracking for de-multiplexing. Furthermore, a hybrid clock recovery scheme is proposed. The scheme is realized with ordinary devices using an optoelectrical modulator to down-convert the clock frequency and a phase-locked loop for filtering, which can provide an indication signal that simultaneously monitors residual dispersion and tracking polarization.
文摘The encoding and decoding processes of traffic channel in digital trunking system are studied. On the basis of computer simulation, the BER (bit error ratio) with different RCPC decoding step is analyzed. As a result, the optimal RCPC decoding step is provided, which gives essential theoretical evidences for the implementation of digital trunking system.
基金The National Natural Science Foundation of China(No.61205163)Marie Curie International Incoming Fellowships(No.301807)by the Research Executive Agency of the European Commission