As a classical technique for chaos suppression,the time-delayed feedback controlling strategy has been widely developed by stabilizing unstable periodic orbits(UPOs)embedded in chaotic systems.A critical issue for ach...As a classical technique for chaos suppression,the time-delayed feedback controlling strategy has been widely developed by stabilizing unstable periodic orbits(UPOs)embedded in chaotic systems.A critical issue for achieving high controlling precision is to search for an appropriate time delay.This paper proposes a simple yet effective approach,based on incremental harmonic balance method,to determine the optimal time delay in the delayed feedback controller.The time delay is adjusted within the iterative scheme provided by the proposed method,and finally converges to the period of the target UPO.As long as the optimal time delay is fixed,moreover,the attained solution makes it quite convenient to analyze its stability according to the Floquet theory,which further provides the effective interval of the feedback gain.展开更多
In this paper, we implement a new approach coupled with the iteration method. This procedure is obtained by combining He’s frequency-amplitude formulation and He’s energy balance method into a new iteration procedur...In this paper, we implement a new approach coupled with the iteration method. This procedure is obtained by combining He’s frequency-amplitude formulation and He’s energy balance method into a new iteration procedure such that excellent approximate analytical solutions, valid for small as well as large values of amplitude, can be determined for nonlinear oscillators. This study has clarified the motion equation of nonlinear oscillators by the iteration method to obtain the relationship between amplitude and angular frequency. We compare the approximate periods obtained by our procedure with the numerical solution and with other methods like energy balance method and variational iteration method. The results show that the approximations are of extreme accuracy.展开更多
We consider non-autonomous ordinary differential equations in two cases.One is the one-dimensional case that admits a condition of hyperbolicity,and the other one is the higher-dimensional case that admits an exponent...We consider non-autonomous ordinary differential equations in two cases.One is the one-dimensional case that admits a condition of hyperbolicity,and the other one is the higher-dimensional case that admits an exponential dichotomy.For differential equations of this kind,we give a rigorous treatment of the Harmonic Balance Method to look for almost periodic solutions.展开更多
A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearize...A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearized under the nonlinear transformation. Various exact solutions of the WBK model equations are obtained via the nonlinear transformation with the aid of solutions for the linear equation.展开更多
稳态响应如周期及准周期解的分岔计算,是非线性动力学研究的难点问题之一.与计算方法及分析理论相对完善的周期响应相比,准周期响应的求解只是在近些年才得到较大进展,而且其分岔分析更加棘手,仍需要更有效的理论和方法.目前,稳态响应...稳态响应如周期及准周期解的分岔计算,是非线性动力学研究的难点问题之一.与计算方法及分析理论相对完善的周期响应相比,准周期响应的求解只是在近些年才得到较大进展,而且其分岔分析更加棘手,仍需要更有效的理论和方法.目前,稳态响应尤其是准周期响应的分岔计算,一般需采用数值方法,通过调节参数反复试算得到.为此,本文基于增量谐波平衡IHB法提出一种快速方法,可以高效地确定准周期响应的对称破缺分岔点.方法的理论基础是在准周期解的广义谐波级数表达基础上,当响应发生对称破缺分岔时,其偶次(含零次)谐波系数将逐渐由0变为小量.基于此性质,将零次谐波系数预先设定为小量,同时将分岔控制参数视为可变的迭代变量,进而通过IHB法构造迭代格式.作为算例,研究不可约频率作用下的双频激励Duffing系统以及Duffing-van der Pol耦合系统.结果表明,只要迭代格式收敛,随着预设小量减小,控制参数将逐渐接近分岔近似值;同时,通过提高谐波截断数可显著提高近似分岔值的计算精度.所提方法无需反复试算,只要迭代过程收敛、便可实现分岔点直接快速计算.展开更多
基金supported by the National Natural Science Foundation of China(Grants 11702333 and 11672337)Natural Science Foundation of Guangdong Province(Grant 2018B030311001).
文摘As a classical technique for chaos suppression,the time-delayed feedback controlling strategy has been widely developed by stabilizing unstable periodic orbits(UPOs)embedded in chaotic systems.A critical issue for achieving high controlling precision is to search for an appropriate time delay.This paper proposes a simple yet effective approach,based on incremental harmonic balance method,to determine the optimal time delay in the delayed feedback controller.The time delay is adjusted within the iterative scheme provided by the proposed method,and finally converges to the period of the target UPO.As long as the optimal time delay is fixed,moreover,the attained solution makes it quite convenient to analyze its stability according to the Floquet theory,which further provides the effective interval of the feedback gain.
文摘In this paper, we implement a new approach coupled with the iteration method. This procedure is obtained by combining He’s frequency-amplitude formulation and He’s energy balance method into a new iteration procedure such that excellent approximate analytical solutions, valid for small as well as large values of amplitude, can be determined for nonlinear oscillators. This study has clarified the motion equation of nonlinear oscillators by the iteration method to obtain the relationship between amplitude and angular frequency. We compare the approximate periods obtained by our procedure with the numerical solution and with other methods like energy balance method and variational iteration method. The results show that the approximations are of extreme accuracy.
基金supported by the National Natural Science Foundation of China(Grants No.12071296 and No.11871273)partially supported by the National Natural Science Foundation of China(Grants Nos.12090014,12031020 and 12271509)。
文摘We consider non-autonomous ordinary differential equations in two cases.One is the one-dimensional case that admits a condition of hyperbolicity,and the other one is the higher-dimensional case that admits an exponential dichotomy.For differential equations of this kind,we give a rigorous treatment of the Harmonic Balance Method to look for almost periodic solutions.
文摘A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearized under the nonlinear transformation. Various exact solutions of the WBK model equations are obtained via the nonlinear transformation with the aid of solutions for the linear equation.
文摘稳态响应如周期及准周期解的分岔计算,是非线性动力学研究的难点问题之一.与计算方法及分析理论相对完善的周期响应相比,准周期响应的求解只是在近些年才得到较大进展,而且其分岔分析更加棘手,仍需要更有效的理论和方法.目前,稳态响应尤其是准周期响应的分岔计算,一般需采用数值方法,通过调节参数反复试算得到.为此,本文基于增量谐波平衡IHB法提出一种快速方法,可以高效地确定准周期响应的对称破缺分岔点.方法的理论基础是在准周期解的广义谐波级数表达基础上,当响应发生对称破缺分岔时,其偶次(含零次)谐波系数将逐渐由0变为小量.基于此性质,将零次谐波系数预先设定为小量,同时将分岔控制参数视为可变的迭代变量,进而通过IHB法构造迭代格式.作为算例,研究不可约频率作用下的双频激励Duffing系统以及Duffing-van der Pol耦合系统.结果表明,只要迭代格式收敛,随着预设小量减小,控制参数将逐渐接近分岔近似值;同时,通过提高谐波截断数可显著提高近似分岔值的计算精度.所提方法无需反复试算,只要迭代过程收敛、便可实现分岔点直接快速计算.