期刊文献+
共找到424篇文章
< 1 2 22 >
每页显示 20 50 100
Pell数平方倒数的无限和(英文) 被引量:4
1
作者 张文鹏 王婷婷 《渭南师范学院学报》 2011年第10期39-42,共4页
In this paper,we consider infinite sums derived from the reciprocals of the square of the Pell numbers.Then applying the floor function to the reciprocals of this sums,we obtain a new and interesting identity involvin... In this paper,we consider infinite sums derived from the reciprocals of the square of the Pell numbers.Then applying the floor function to the reciprocals of this sums,we obtain a new and interesting identity involving the Pell numbers. 展开更多
关键词 pell numbers Floor function IDENTITY
下载PDF
The Pell Equations x^2-8y^2=1 and y^2-Dz^2=1 被引量:2
2
作者 潘家宇 张玉萍 邹荣 《Chinese Quarterly Journal of Mathematics》 CSCD 1999年第1期73-77, ,共5页
In this paper,we have proved that if one of the following conditions is satisfed,then the equations in title has no positive integer solution:①D=∏si=1P i or D=2∏si=1P i and \{ P i≡3 (mod 4)\} (1≤i≤s) or P i≡5 (... In this paper,we have proved that if one of the following conditions is satisfed,then the equations in title has no positive integer solution:①D=∏si=1P i or D=2∏si=1P i and \{ P i≡3 (mod 4)\} (1≤i≤s) or P i≡5 (mod 8) (i≤i≤s); ② D=∏si=1P i-1 (mod 12), 1≤s≤7 and \{D≠3·5·7·11·17·577,7·19·29·41·59·577;\} ③ D=2∏si=1P i,1≤s≤6 and \{D ≠2·17,2·3·5·7·11·17,2·17·113·239·337·577·665857;\} ④ D=∏si=1P i≡-1 (mod 12), 1≤s≤3 and D≠ 5·7,29·41·239. 展开更多
关键词 pell equation INTEGER prime factor
下载PDF
A Note on the Exponential Diophantine Equation (a^m-1)(b^n-1) = x^2 被引量:2
3
作者 Min TANG 《Journal of Mathematical Research and Exposition》 CSCD 2011年第6期1064-1066,共3页
Let a and b be fixed positive integers.In this paper,using some elementary methods,we study the diophantine equation(a^m-1)(b^n-1)= x^2.For example,we prove that if a ≡ 2(mod 6),b ≡ 3(mod 12),then(a^n-1)(... Let a and b be fixed positive integers.In this paper,using some elementary methods,we study the diophantine equation(a^m-1)(b^n-1)= x^2.For example,we prove that if a ≡ 2(mod 6),b ≡ 3(mod 12),then(a^n-1)(b^m-1)= x^2 has no solutions in positive integers n,m and x. 展开更多
关键词 pell's equation congruences.
下载PDF
基于PELL的CDIO教学模式在护士临床实习教学中的应用研究
4
作者 周虹媛 宋云华 尹竹萍 《中文科技期刊数据库(全文版)教育科学》 2023年第11期160-163,共4页
探讨基于PELL的CDIO教学模式在护士临床实习教学中的应用研究。本研究包括两个部分。第一部分:构建基于PELL的CDIO教学模式,通过文献研究,以CDIO教学模式作为理论框架,制定基于PELL的CDIO教学模式初稿。通过两轮专家小组讨论和预实验构... 探讨基于PELL的CDIO教学模式在护士临床实习教学中的应用研究。本研究包括两个部分。第一部分:构建基于PELL的CDIO教学模式,通过文献研究,以CDIO教学模式作为理论框架,制定基于PELL的CDIO教学模式初稿。通过两轮专家小组讨论和预实验构建教学方案。第二部分:基于PELL的CDIO教学模式在临床实习教学中的应用研究。选取云南省某三甲医院临床实习的本科护理实习生,采用便利抽样方法,按照纳入与排除标准共纳入137名新入职护士,对照组67人,实验组70人。对照组采用常规教学,实验组采用常规教学和CDIO教学模式。评价标准为急救能力得分、沟通能力得分、批判性思维能力得分、教学满意度评分以及综合测评成绩。P<0.05认为差异具有统计学意义。结论:在临床护生的培训中,基于PEIL的CDIO教学模式具有明显的优势,促进其岗位胜任力的培养与发展,改善了护生对临床带教的满意度,提高护生的临床评判性思维,在提升临床教学质量方面有推动作用。 展开更多
关键词 pell CDIO教学模式 实习护生 岗位胜任力 教学满意度
下载PDF
Complete Solution of Diophantine Pairs Induced by Some Fibonacci Formula
5
作者 Jinseo Park 《Algebra Colloquium》 SCIE CSCD 2023年第1期121-132,共12页
A set[ai,a2,...,am)of positive integers is called a Diophantine m-tuple if aiaj+1 is a perfect square for all 1≤i<j≤m.Let(a,b,c)be the Diophantine triple with c>max(a,b].In this paper,we find the condition for... A set[ai,a2,...,am)of positive integers is called a Diophantine m-tuple if aiaj+1 is a perfect square for all 1≤i<j≤m.Let(a,b,c)be the Diophantine triple with c>max(a,b].In this paper,we find the condition for the reduction of third element c,and using this result,we prove the extendibility of Diophantine pair[F_(k)-1F_(k+1),F_(k-2)F_(k+2)],where Fn is the n-th Fibonacci number. 展开更多
关键词 Diophantine m-tuple Fibonacci numbers pell equation
原文传递
The Pell Equation X<sup>2</sup>- Dy<sup>2</sup>= ±k<sup>2</sup>
6
作者 Amara Chandoul 《Advances in Pure Mathematics》 2011年第2期16-22,共7页
Let D≠1 be a positive non-square integer and k≥2 be any fixed integer. Extending the work of A. Tek-can, here we obtain some formulas for the integer solutions of the Pell equation X2 - Dy2 = ± k2 .
关键词 pell’s EQUATION SOLUTIONS of pell’s EQUATION
下载PDF
Zeckendorf representations with at most two terms to x-coordinates of Pell equations
7
作者 Carlos A.Gómez Florian Luca 《Science China Mathematics》 SCIE CSCD 2020年第4期627-642,共16页
In this paper,we find all positive squarefree integers d satisfying that the Pell equation X^2-d Y^2=±1 has at least two positive integer solutions(X,Y)and(X′,Y′)such that both X and X′have Zeckendorf represen... In this paper,we find all positive squarefree integers d satisfying that the Pell equation X^2-d Y^2=±1 has at least two positive integer solutions(X,Y)and(X′,Y′)such that both X and X′have Zeckendorf representations with at most two terms. 展开更多
关键词 pell equation FIBONACCI NUMBERS lower BOUNDS for linear forms in LOGARITHMS reduction method
原文传递
Newton, Halley, Pell and the Optimal Iterative High-Order Rational Approximation of √<span style='margin-left:-2px;margin-right:2px;border-top:1px solid black'>N</span>
8
作者 Isaac Fried 《Applied Mathematics》 2018年第7期861-873,共13页
In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense... In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense of Pell’s equation p2 - Nq2 = k for some integer k, converging either alternatingly or oppositely. 展开更多
关键词 ITERATIVE METHODS Super-Linear and Super-Quadratic METHODS Square Roots pell’s Equation OPTIMAL Rational Iterants Root Bounds
下载PDF
On Polynomials Solutions of Quadratic Diophantine Equations
9
作者 Amara Chandoul 《Advances in Pure Mathematics》 2011年第4期155-159,共5页
Let P:=P(t) be a polynomial in Z[X]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation E:X2–(P2–P)Y2–(4P2–2)X+(4P2–4P)Y=0. We also obtain some formulas and recurrence rela... Let P:=P(t) be a polynomial in Z[X]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation E:X2–(P2–P)Y2–(4P2–2)X+(4P2–4P)Y=0. We also obtain some formulas and recurrence relations on the polynomial solution (Xn,Yn) of 展开更多
关键词 POLYNOMIAL SOLUTIONS pell’s EQUATION DIOPHANTINE EQUATION
下载PDF
ON THE DIOPHANTINE EQUATION (ax^m-1)/(abx-1)=by^2
10
作者 曹珍富 《Chinese Science Bulletin》 SCIE EI CAS 1991年第4期275-278,共4页
with elementary method of Pell’s equation, and the results we get is generalization of the studies of Ljunggren (a=b=1)and Sun Qi et al. (b=1).Theorem 1. If a, b∈N, then the Diophantine equation (1) only has s... with elementary method of Pell’s equation, and the results we get is generalization of the studies of Ljunggren (a=b=1)and Sun Qi et al. (b=1).Theorem 1. If a, b∈N, then the Diophantine equation (1) only has solutions in positive integers x=y=1 (when a】1, b=1) and m=4s+1, x=3, y=3<sup>2s</sup>+2 (when a=1/4 (3<sup>2s-1</sup>+1), b=1), where s is a positive integer. 展开更多
关键词 DIOPHANTINE EQUATION pell’s EQUATION ELEMENTARY method.
原文传递
Text Encryption Using Pell Sequence and Elliptic Curves with Provable Security
11
作者 Sumaira Azhar Naveed Ahmed Azam Umar Hayat 《Computers, Materials & Continua》 SCIE EI 2022年第6期4971-4988,共18页
The demand for data security schemes has increased with the significant advancement in the field of computation and communication networks.We propose a novel three-step text encryption scheme that has provable securit... The demand for data security schemes has increased with the significant advancement in the field of computation and communication networks.We propose a novel three-step text encryption scheme that has provable security against computation attacks such as key attack and statistical attack.The proposed scheme is based on the Pell sequence and elliptic curves,where at the first step the plain text is diffused to get a meaningless plain text by applying a cyclic shift on the symbol set.In the second step,we hide the elements of the diffused plain text from the attackers.For this purpose,we use the Pell sequence,a weight function,and a binary sequence to encode each element of the diffused plain text into real numbers.The encoded diffused plain text is then confused by generating permutations over elliptic curves in the third step.We show that the proposed scheme has provable security against key sensitivity attack and statistical attacks.Furthermore,the proposed scheme is secure against key spacing attack,ciphertext only attack,and known-plaintext attack.Compared to some of the existing text encryption schemes,the proposed scheme is highly secure against modern cryptanalysis. 展开更多
关键词 Text encryption pell numbers elliptic curves key sensitivity statistical cryptanalysis
下载PDF
Two-parameter families of uniquely extendable Diophantine triples
12
作者 Mihai Cipu Yasutsugu Fujita Maurice Mignotte 《Science China Mathematics》 SCIE CSCD 2018年第3期421-438,共18页
Let A and K be positive integers and ε∈ {-2,-1,1,2}. The main contribution of the paper is a proof that each of the D(ε~2)-triples {K, A^2 K+2εA,(A +1)~2 K + 2ε(A+1)} has uniqui extension to a D(ε~2)-quadruple. ... Let A and K be positive integers and ε∈ {-2,-1,1,2}. The main contribution of the paper is a proof that each of the D(ε~2)-triples {K, A^2 K+2εA,(A +1)~2 K + 2ε(A+1)} has uniqui extension to a D(ε~2)-quadruple. This is used to slightly strengthen the conditions required for the existencc of a D(1)-quintuple whose smallest three elements form a regular triple. 展开更多
关键词 Diophantine m-tuples pell equations hypergeometric method linear forms in logarithms
原文传递
Rational Points of Elliptic Curve y2 = x3+ k3
13
作者 Xia Wu Yan Qin 《Algebra Colloquium》 SCIE CSCD 2018年第1期133-138,共6页
Let E be an elliptic curve defined over the field of rational numbers ~. Let d be a square-free integer and let Ed be the quadratic twist of E determined by d. Mai, Murty and Ono have proved that there are infinitely ... Let E be an elliptic curve defined over the field of rational numbers ~. Let d be a square-free integer and let Ed be the quadratic twist of E determined by d. Mai, Murty and Ono have proved that there are infinitely many square-free integers d such that the rank of Ed(Q) is zero. Let E(k) denote the elliptic curve y2 = x3 + k. Then the quadratic twist E(1)d of E(1) by d is the elliptic curve E(d3): y2 = x3+ k3. Let r = 1, 2, 5, 10, 13, 14, 17, 22. Ono proved that there are infinitely many square-free integers d = r (rood 24) such that rankE(-d3)(Q) = 0, using the theory of modular forms. In this paper, we use the class number of quadratic field and Pell equation to describe these square-free integers k such that E(k3)(Q) has rank zero. 展开更多
关键词 elliptic curve rational point class number pell equation
原文传递
Polynomial Generalizations and Combinatorial Interpretations for Sequences Including the Fibonacci and Pell Numbers
14
作者 Cecília Pereira de Andrade Jose Plinio de Oliveira Santos +1 位作者 Elen Viviani Pereira da Silva Kenia Cristina Pereira Silva 《Open Journal of Discrete Mathematics》 2013年第1期25-32,共8页
In this paper we present combinatorial interpretations and polynomials generalizations for sequences including the Fibonacci numbers, the Pell numbers and the Jacobsthal numbers in terms of partitions. It is important... In this paper we present combinatorial interpretations and polynomials generalizations for sequences including the Fibonacci numbers, the Pell numbers and the Jacobsthal numbers in terms of partitions. It is important to mention that results of this nature were given by Santos and Ivkovic in two papers published on the Fibonacci Quarterly, Polynomial generalizations of the Pell sequence and the Fibonacci sequence [1] and Fibonacci Numbers and Partitions [2] , and one, by Santos, on Discrete Mathematics, On the Combinatorics of Polynomial generalizations of Rogers-Ramanujan Type Identities [3]. By these results one can see that from the q-series identities important combinatorial information can be obtained by a careful study of the two variable function introduced by Andrews in Combinatorics and Ramanujan's lost notebook [4]. 展开更多
关键词 PARTITIONS Fibonacci Numbers pell Numbers Jacobsthal Numbers Q-ANALOG
下载PDF
一类Brahmagupta-Fermat-Pell方程x^2-dy^2=±1(英文)
15
作者 Michel Waldschmidt 《渭南师范学院学报》 2011年第10期24-38,共15页
This paper corresponds to the written versions of many lectures at several locations including the most recent one at Weinan Teachers University on June 8,2011.I would like to thank Professor Hailong Li for inviting m... This paper corresponds to the written versions of many lectures at several locations including the most recent one at Weinan Teachers University on June 8,2011.I would like to thank Professor Hailong Li for inviting me to publish this in the journal of his university.I wish also to express my deep gratitude to my friend Shigeru Kanemitsu,thanks to whom I could visit Weinan Teachers University,and who also came up with a written version of these notes. The topic is centered around the equation x2-dy2=±1,which is important because it produces the(infinitely many) units of real quadratic fields.This equation,where the unknowns x and y are positive integers while d is a fixed positive integer which is not a square,has been mistakenly called with the name of Pell by Euler.It was investigated by Indian mathematicians since Brahmagupta(628) who solved the case d=92,then by Bhaskara II(1150) for d=61 and Narayana(during the 14-th Century) for d=103.The smallest solution of x2-dy2=1 for these values of d are respectively 1 1512-92·1202=1, 1 766 319 0492-61·226 153 9802=1 and 227 5282-103·22 4192=1, and hence they could not have been found by a brute force search! After a short introduction to this long story of Pell's equation,we explain its connection with Diophantine approximation and continued fractions(which have close connection with the structure of real quadratic fields),and we conclude by saying a few words on more recent developments of the subject in terms of varieties.Finally we mention applications of continued fraction expansion to electrical circuits. 展开更多
关键词 pell’s equation Diophantine approximation equation solutions
下载PDF
椭圆曲线y^2=x^3+27x-62的整数点 被引量:41
16
作者 吴华明 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第1期205-208,共4页
根据四次Diophantine方程的已知结果,运用初等数论方法证明了:椭圆曲线y^2=x^3+27x-62仅有整数点(x,y)=(2,0)和(28844402,±154914585540).
关键词 椭圆曲线 整数点 pell方程
原文传递
关于丢番图方程x^3+z^3=Dy^2 被引量:32
17
作者 曹珍富 董晓蕾 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 1999年第2期110-113,共4页
设D∈N无平方因子且不被6k+1形的素数整除.文中给出了方程x3+z3=Dy2,x,z∈Z,y∈N,(x,z)=1的全部解的表达式;同时给出了方程x3±(3a5B)=Dy2时,x∈Z,y∈N,α,β∈N{0}的全部解.
关键词 丢番图方程 指数丢番图方程 全部解
下载PDF
关于不定方程x^4-Dy^2=1的一个注记 被引量:30
18
作者 孙琦 袁平之 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 1997年第3期265-268,共4页
设整数D>0且不是平方数,本文证明了不定方程x4-Dy2=1除开D=1785,4·1785,16·1785时,分别有二组正整数解(x,y)=(13,4),(239,1352);(x,y)=(13,2),(23... 设整数D>0且不是平方数,本文证明了不定方程x4-Dy2=1除开D=1785,4·1785,16·1785时,分别有二组正整数解(x,y)=(13,4),(239,1352);(x,y)=(13,2),(239,676);(x,y)=(13,1),(239,338)外,最多只有一组正整数解(x1,y1),且满足x21=x0或2x20-1。 展开更多
关键词 pell方程 基本解 不定方程 正整数解
下载PDF
关于丢番图方程x^3+1=13y^2 xy≠0 被引量:25
19
作者 王镇江 佟瑞洲 《黑龙江大学自然科学学报》 CAS 1991年第4期48-50,共3页
本文证明了方程x^3+1=13y^2 只有整数解x=-1,y=0.
关键词 整数解 充要条件 丢番图 pell方程
下载PDF
关于丢番图方程X^3+1=DY^2 被引量:27
20
作者 杨丽芬 郝立柱 《哈尔滨师范大学自然科学学报》 1995年第4期32-36,共5页
本文证明了X3+1=DY2(0<D<100,不含平方因子,且被6k+1形素数整除,D≠7,14,35,37,38,5765,8691)无非平凡整数解。
关键词 整数解 pell方程 丢番图方程
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部