In this paper,we consider infinite sums derived from the reciprocals of the square of the Pell numbers.Then applying the floor function to the reciprocals of this sums,we obtain a new and interesting identity involvin...In this paper,we consider infinite sums derived from the reciprocals of the square of the Pell numbers.Then applying the floor function to the reciprocals of this sums,we obtain a new and interesting identity involving the Pell numbers.展开更多
In this paper,we have proved that if one of the following conditions is satisfed,then the equations in title has no positive integer solution:①D=∏si=1P i or D=2∏si=1P i and \{ P i≡3 (mod 4)\} (1≤i≤s) or P i≡5 (...In this paper,we have proved that if one of the following conditions is satisfed,then the equations in title has no positive integer solution:①D=∏si=1P i or D=2∏si=1P i and \{ P i≡3 (mod 4)\} (1≤i≤s) or P i≡5 (mod 8) (i≤i≤s); ② D=∏si=1P i-1 (mod 12), 1≤s≤7 and \{D≠3·5·7·11·17·577,7·19·29·41·59·577;\} ③ D=2∏si=1P i,1≤s≤6 and \{D ≠2·17,2·3·5·7·11·17,2·17·113·239·337·577·665857;\} ④ D=∏si=1P i≡-1 (mod 12), 1≤s≤3 and D≠ 5·7,29·41·239.展开更多
Let a and b be fixed positive integers.In this paper,using some elementary methods,we study the diophantine equation(a^m-1)(b^n-1)= x^2.For example,we prove that if a ≡ 2(mod 6),b ≡ 3(mod 12),then(a^n-1)(...Let a and b be fixed positive integers.In this paper,using some elementary methods,we study the diophantine equation(a^m-1)(b^n-1)= x^2.For example,we prove that if a ≡ 2(mod 6),b ≡ 3(mod 12),then(a^n-1)(b^m-1)= x^2 has no solutions in positive integers n,m and x.展开更多
A set[ai,a2,...,am)of positive integers is called a Diophantine m-tuple if aiaj+1 is a perfect square for all 1≤i<j≤m.Let(a,b,c)be the Diophantine triple with c>max(a,b].In this paper,we find the condition for...A set[ai,a2,...,am)of positive integers is called a Diophantine m-tuple if aiaj+1 is a perfect square for all 1≤i<j≤m.Let(a,b,c)be the Diophantine triple with c>max(a,b].In this paper,we find the condition for the reduction of third element c,and using this result,we prove the extendibility of Diophantine pair[F_(k)-1F_(k+1),F_(k-2)F_(k+2)],where Fn is the n-th Fibonacci number.展开更多
Let D≠1 be a positive non-square integer and k≥2 be any fixed integer. Extending the work of A. Tek-can, here we obtain some formulas for the integer solutions of the Pell equation X2 - Dy2 = ± k2 .
In this paper,we find all positive squarefree integers d satisfying that the Pell equation X^2-d Y^2=±1 has at least two positive integer solutions(X,Y)and(X′,Y′)such that both X and X′have Zeckendorf represen...In this paper,we find all positive squarefree integers d satisfying that the Pell equation X^2-d Y^2=±1 has at least two positive integer solutions(X,Y)and(X′,Y′)such that both X and X′have Zeckendorf representations with at most two terms.展开更多
In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense...In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense of Pell’s equation p2 - Nq2 = k for some integer k, converging either alternatingly or oppositely.展开更多
Let P:=P(t) be a polynomial in Z[X]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation E:X2–(P2–P)Y2–(4P2–2)X+(4P2–4P)Y=0. We also obtain some formulas and recurrence rela...Let P:=P(t) be a polynomial in Z[X]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation E:X2–(P2–P)Y2–(4P2–2)X+(4P2–4P)Y=0. We also obtain some formulas and recurrence relations on the polynomial solution (Xn,Yn) of展开更多
with elementary method of Pell’s equation, and the results we get is generalization of the studies of Ljunggren (a=b=1)and Sun Qi et al. (b=1).Theorem 1. If a, b∈N, then the Diophantine equation (1) only has s...with elementary method of Pell’s equation, and the results we get is generalization of the studies of Ljunggren (a=b=1)and Sun Qi et al. (b=1).Theorem 1. If a, b∈N, then the Diophantine equation (1) only has solutions in positive integers x=y=1 (when a】1, b=1) and m=4s+1, x=3, y=3<sup>2s</sup>+2 (when a=1/4 (3<sup>2s-1</sup>+1), b=1), where s is a positive integer.展开更多
The demand for data security schemes has increased with the significant advancement in the field of computation and communication networks.We propose a novel three-step text encryption scheme that has provable securit...The demand for data security schemes has increased with the significant advancement in the field of computation and communication networks.We propose a novel three-step text encryption scheme that has provable security against computation attacks such as key attack and statistical attack.The proposed scheme is based on the Pell sequence and elliptic curves,where at the first step the plain text is diffused to get a meaningless plain text by applying a cyclic shift on the symbol set.In the second step,we hide the elements of the diffused plain text from the attackers.For this purpose,we use the Pell sequence,a weight function,and a binary sequence to encode each element of the diffused plain text into real numbers.The encoded diffused plain text is then confused by generating permutations over elliptic curves in the third step.We show that the proposed scheme has provable security against key sensitivity attack and statistical attacks.Furthermore,the proposed scheme is secure against key spacing attack,ciphertext only attack,and known-plaintext attack.Compared to some of the existing text encryption schemes,the proposed scheme is highly secure against modern cryptanalysis.展开更多
Let A and K be positive integers and ε∈ {-2,-1,1,2}. The main contribution of the paper is a proof that each of the D(ε~2)-triples {K, A^2 K+2εA,(A +1)~2 K + 2ε(A+1)} has uniqui extension to a D(ε~2)-quadruple. ...Let A and K be positive integers and ε∈ {-2,-1,1,2}. The main contribution of the paper is a proof that each of the D(ε~2)-triples {K, A^2 K+2εA,(A +1)~2 K + 2ε(A+1)} has uniqui extension to a D(ε~2)-quadruple. This is used to slightly strengthen the conditions required for the existencc of a D(1)-quintuple whose smallest three elements form a regular triple.展开更多
Let E be an elliptic curve defined over the field of rational numbers ~. Let d be a square-free integer and let Ed be the quadratic twist of E determined by d. Mai, Murty and Ono have proved that there are infinitely ...Let E be an elliptic curve defined over the field of rational numbers ~. Let d be a square-free integer and let Ed be the quadratic twist of E determined by d. Mai, Murty and Ono have proved that there are infinitely many square-free integers d such that the rank of Ed(Q) is zero. Let E(k) denote the elliptic curve y2 = x3 + k. Then the quadratic twist E(1)d of E(1) by d is the elliptic curve E(d3): y2 = x3+ k3. Let r = 1, 2, 5, 10, 13, 14, 17, 22. Ono proved that there are infinitely many square-free integers d = r (rood 24) such that rankE(-d3)(Q) = 0, using the theory of modular forms. In this paper, we use the class number of quadratic field and Pell equation to describe these square-free integers k such that E(k3)(Q) has rank zero.展开更多
In this paper we present combinatorial interpretations and polynomials generalizations for sequences including the Fibonacci numbers, the Pell numbers and the Jacobsthal numbers in terms of partitions. It is important...In this paper we present combinatorial interpretations and polynomials generalizations for sequences including the Fibonacci numbers, the Pell numbers and the Jacobsthal numbers in terms of partitions. It is important to mention that results of this nature were given by Santos and Ivkovic in two papers published on the Fibonacci Quarterly, Polynomial generalizations of the Pell sequence and the Fibonacci sequence [1] and Fibonacci Numbers and Partitions [2] , and one, by Santos, on Discrete Mathematics, On the Combinatorics of Polynomial generalizations of Rogers-Ramanujan Type Identities [3]. By these results one can see that from the q-series identities important combinatorial information can be obtained by a careful study of the two variable function introduced by Andrews in Combinatorics and Ramanujan's lost notebook [4].展开更多
This paper corresponds to the written versions of many lectures at several locations including the most recent one at Weinan Teachers University on June 8,2011.I would like to thank Professor Hailong Li for inviting m...This paper corresponds to the written versions of many lectures at several locations including the most recent one at Weinan Teachers University on June 8,2011.I would like to thank Professor Hailong Li for inviting me to publish this in the journal of his university.I wish also to express my deep gratitude to my friend Shigeru Kanemitsu,thanks to whom I could visit Weinan Teachers University,and who also came up with a written version of these notes. The topic is centered around the equation x2-dy2=±1,which is important because it produces the(infinitely many) units of real quadratic fields.This equation,where the unknowns x and y are positive integers while d is a fixed positive integer which is not a square,has been mistakenly called with the name of Pell by Euler.It was investigated by Indian mathematicians since Brahmagupta(628) who solved the case d=92,then by Bhaskara II(1150) for d=61 and Narayana(during the 14-th Century) for d=103.The smallest solution of x2-dy2=1 for these values of d are respectively 1 1512-92·1202=1, 1 766 319 0492-61·226 153 9802=1 and 227 5282-103·22 4192=1, and hence they could not have been found by a brute force search! After a short introduction to this long story of Pell's equation,we explain its connection with Diophantine approximation and continued fractions(which have close connection with the structure of real quadratic fields),and we conclude by saying a few words on more recent developments of the subject in terms of varieties.Finally we mention applications of continued fraction expansion to electrical circuits.展开更多
文摘In this paper,we consider infinite sums derived from the reciprocals of the square of the Pell numbers.Then applying the floor function to the reciprocals of this sums,we obtain a new and interesting identity involving the Pell numbers.
文摘In this paper,we have proved that if one of the following conditions is satisfed,then the equations in title has no positive integer solution:①D=∏si=1P i or D=2∏si=1P i and \{ P i≡3 (mod 4)\} (1≤i≤s) or P i≡5 (mod 8) (i≤i≤s); ② D=∏si=1P i-1 (mod 12), 1≤s≤7 and \{D≠3·5·7·11·17·577,7·19·29·41·59·577;\} ③ D=2∏si=1P i,1≤s≤6 and \{D ≠2·17,2·3·5·7·11·17,2·17·113·239·337·577·665857;\} ④ D=∏si=1P i≡-1 (mod 12), 1≤s≤3 and D≠ 5·7,29·41·239.
基金Supported by the National Natural Science Foundation of China (Grant No.10901002)
文摘Let a and b be fixed positive integers.In this paper,using some elementary methods,we study the diophantine equation(a^m-1)(b^n-1)= x^2.For example,we prove that if a ≡ 2(mod 6),b ≡ 3(mod 12),then(a^n-1)(b^m-1)= x^2 has no solutions in positive integers n,m and x.
基金supported by the National Research Foundation of Korea(NRF)gi funded by the Korea government(MSIT)(No.2019R1G1A1006396).
文摘A set[ai,a2,...,am)of positive integers is called a Diophantine m-tuple if aiaj+1 is a perfect square for all 1≤i<j≤m.Let(a,b,c)be the Diophantine triple with c>max(a,b].In this paper,we find the condition for the reduction of third element c,and using this result,we prove the extendibility of Diophantine pair[F_(k)-1F_(k+1),F_(k-2)F_(k+2)],where Fn is the n-th Fibonacci number.
文摘Let D≠1 be a positive non-square integer and k≥2 be any fixed integer. Extending the work of A. Tek-can, here we obtain some formulas for the integer solutions of the Pell equation X2 - Dy2 = ± k2 .
基金supported by the project from Universidad del Valle(Grant No.71079)supported by NRF of South Africa(Grant No.CPRR160325161141)an A-Rated Scientist Award from the NRF of South Africa and by Czech Granting Agency(Grant No.17-02804S)。
文摘In this paper,we find all positive squarefree integers d satisfying that the Pell equation X^2-d Y^2=±1 has at least two positive integer solutions(X,Y)and(X′,Y′)such that both X and X′have Zeckendorf representations with at most two terms.
文摘In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense of Pell’s equation p2 - Nq2 = k for some integer k, converging either alternatingly or oppositely.
文摘Let P:=P(t) be a polynomial in Z[X]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation E:X2–(P2–P)Y2–(4P2–2)X+(4P2–4P)Y=0. We also obtain some formulas and recurrence relations on the polynomial solution (Xn,Yn) of
文摘with elementary method of Pell’s equation, and the results we get is generalization of the studies of Ljunggren (a=b=1)and Sun Qi et al. (b=1).Theorem 1. If a, b∈N, then the Diophantine equation (1) only has solutions in positive integers x=y=1 (when a】1, b=1) and m=4s+1, x=3, y=3<sup>2s</sup>+2 (when a=1/4 (3<sup>2s-1</sup>+1), b=1), where s is a positive integer.
基金This research is funded through JSPS KAKENHI Grant Number 18J23484,QAU-URF 2015HEC project NRPU-7433.
文摘The demand for data security schemes has increased with the significant advancement in the field of computation and communication networks.We propose a novel three-step text encryption scheme that has provable security against computation attacks such as key attack and statistical attack.The proposed scheme is based on the Pell sequence and elliptic curves,where at the first step the plain text is diffused to get a meaningless plain text by applying a cyclic shift on the symbol set.In the second step,we hide the elements of the diffused plain text from the attackers.For this purpose,we use the Pell sequence,a weight function,and a binary sequence to encode each element of the diffused plain text into real numbers.The encoded diffused plain text is then confused by generating permutations over elliptic curves in the third step.We show that the proposed scheme has provable security against key sensitivity attack and statistical attacks.Furthermore,the proposed scheme is secure against key spacing attack,ciphertext only attack,and known-plaintext attack.Compared to some of the existing text encryption schemes,the proposed scheme is highly secure against modern cryptanalysis.
基金supported by Grants-in-Aid for Scientific Research(JSPS KAKENHI) (Grant No. 16K05079)
文摘Let A and K be positive integers and ε∈ {-2,-1,1,2}. The main contribution of the paper is a proof that each of the D(ε~2)-triples {K, A^2 K+2εA,(A +1)~2 K + 2ε(A+1)} has uniqui extension to a D(ε~2)-quadruple. This is used to slightly strengthen the conditions required for the existencc of a D(1)-quintuple whose smallest three elements form a regular triple.
文摘Let E be an elliptic curve defined over the field of rational numbers ~. Let d be a square-free integer and let Ed be the quadratic twist of E determined by d. Mai, Murty and Ono have proved that there are infinitely many square-free integers d such that the rank of Ed(Q) is zero. Let E(k) denote the elliptic curve y2 = x3 + k. Then the quadratic twist E(1)d of E(1) by d is the elliptic curve E(d3): y2 = x3+ k3. Let r = 1, 2, 5, 10, 13, 14, 17, 22. Ono proved that there are infinitely many square-free integers d = r (rood 24) such that rankE(-d3)(Q) = 0, using the theory of modular forms. In this paper, we use the class number of quadratic field and Pell equation to describe these square-free integers k such that E(k3)(Q) has rank zero.
基金Partially supported by FAPESP(Fundacao de Amparo a Pesquisa do Estado de Sao Paulo).
文摘In this paper we present combinatorial interpretations and polynomials generalizations for sequences including the Fibonacci numbers, the Pell numbers and the Jacobsthal numbers in terms of partitions. It is important to mention that results of this nature were given by Santos and Ivkovic in two papers published on the Fibonacci Quarterly, Polynomial generalizations of the Pell sequence and the Fibonacci sequence [1] and Fibonacci Numbers and Partitions [2] , and one, by Santos, on Discrete Mathematics, On the Combinatorics of Polynomial generalizations of Rogers-Ramanujan Type Identities [3]. By these results one can see that from the q-series identities important combinatorial information can be obtained by a careful study of the two variable function introduced by Andrews in Combinatorics and Ramanujan's lost notebook [4].
文摘This paper corresponds to the written versions of many lectures at several locations including the most recent one at Weinan Teachers University on June 8,2011.I would like to thank Professor Hailong Li for inviting me to publish this in the journal of his university.I wish also to express my deep gratitude to my friend Shigeru Kanemitsu,thanks to whom I could visit Weinan Teachers University,and who also came up with a written version of these notes. The topic is centered around the equation x2-dy2=±1,which is important because it produces the(infinitely many) units of real quadratic fields.This equation,where the unknowns x and y are positive integers while d is a fixed positive integer which is not a square,has been mistakenly called with the name of Pell by Euler.It was investigated by Indian mathematicians since Brahmagupta(628) who solved the case d=92,then by Bhaskara II(1150) for d=61 and Narayana(during the 14-th Century) for d=103.The smallest solution of x2-dy2=1 for these values of d are respectively 1 1512-92·1202=1, 1 766 319 0492-61·226 153 9802=1 and 227 5282-103·22 4192=1, and hence they could not have been found by a brute force search! After a short introduction to this long story of Pell's equation,we explain its connection with Diophantine approximation and continued fractions(which have close connection with the structure of real quadratic fields),and we conclude by saying a few words on more recent developments of the subject in terms of varieties.Finally we mention applications of continued fraction expansion to electrical circuits.